期刊文献+

Experimental and first-principles calculation of TiN growth mechanism on CeAlO_(3) surface in steel

原文传递
导出
摘要 Regular TiN is harmful to the toughness of steel,and its shape and size need to be controlled.Understanding the behavior of TiN precipitation on CeAlO_(3) surfaces is critical for controlling the morphology and formation process of CeAlO_(3)–TiN composite inclusions in the steel.Experimental results showed that TiN had a square morphology on the CeAlO3 surface,and electron backscatter diffraction phase identification results revealed the orientation relationship between CeAlO_(3) and TiN as follows:(001)_(CeAlO_(3))//(110)_(TiN),(100)_(CeAlO_(3))/(001)_(TiN),and[010]_(CeAlO_(3))/[110]_(TiN).The CeAlO3 crystal structure was studied using the first-principles calculation method,and the adsorption and growth process of TiN on the CeAlO_(3) surface were investigated from the atomic scale.The calculation results indicate that there is no metallic bonding present in the CeAlO_(3) system.Among the low-index crystal planes of CeAlO_(3),the(110)planes terminated with O and CeAlO have the highest and lowest surface energies,respectively,with values of 0.373 and 0.051 eV/Å^(2).On the high surface energy plane of CeAlO_(3),the TiN atomic permutation structure is consistent with the arrangement of Ti and N atoms in TiN(100)or(110).For the low surface energy plane of CeAlO_(3),the Ti and N atoms are arranged in a ring-like structure.
出处 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第2期452-463,共12页 钢铁研究学报(英文版)
基金 financially supported by the National Natural Science Foundation of China(Grant Nos.51874186 and 51864041) the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2022MS05017).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部