期刊文献+

基于强化学习的自动驾驶联合训练方法

Joint Training Method for Autonomous Driving Based on Reinforcement Learning
下载PDF
导出
摘要 自动驾驶控制算法对自动驾驶至关重要,为了设计适应多种环境更高效的自动驾驶控制算法,提出了基于强化学习的联合训练方法。自动驾驶控制算法应该在各种道路环境、各种天气环境、各种场景下都可以稳定的运行,因此通过人工智能的方法设计自动驾驶算法时必须要考虑到各种场景。基于TORCS仿真软件设计了基于强化学习的联合训练方法,包括使用神经网络拟合动作、状态空间,设置训练策略、奖励函数等机制。同时通过在不同环境下设置多个智能体进行强化学习训练,并设计了联合训练的算法,实现多个智能体在不同环境下进行联合训练,不同智能体共享相互学习到的经验,提高了模型的泛化性。所设计的联合训练方法实现了多个强化学习智能体的联合训练,并通过了实验验证,达到了高效、稳定的训练策略。 Automatic driving control algorithm is very important for automatic driving.In order to design more efficient automatic driving control algorithm adapted to various environments,this paper proposes a joint training method based on reinforcement learning.The automatic driving control algorithm should be able to run stably in various road environments,weather environments and scenarios.Therefore,to design an automatic driving algorithm through artificial intelligence,various scenarios must be taken into account.Based on TORCS simulation software,this paper designs a joint training method based on reinforcement learning,including using neural network to fit action and state space,setting training strategy,reward function and other mechanisms.At the same time,multiple agents are set up in different environments for reinforcement learning training,and the algorithm of joint training is designed to realize the joint training of multiple agents in different environments,and different agents share the experience learned from each other,which improves the generalization of the model.The joint training method designed in this paper realizes the joint training of multiple reinforcement learning agents,and is verified by experiments,and achieves an efficient and stable training strategy.
作者 陈恒星 刘一鸣 Chen Hengxing;Liu Yiming(Business School,Macao University of Science and Technology,Macao 999078,China;Business School,Sun Yat-sen University,Guangzhou 510006,China)
出处 《机电工程技术》 2024年第3期131-135,共5页 Mechanical & Electrical Engineering Technology
关键词 强化学习 自动驾驶 人工智能 reinforcement learning autonomous driving artificial intelligence
  • 相关文献

参考文献16

二级参考文献77

  • 1王景武,金立生.车辆自适应巡航控制系统控制技术的发展[J].汽车技术,2004(7):1-4. 被引量:19
  • 2魏英姿 ,赵明扬 .一种基于强化学习的作业车间动态调度方法[J].自动化学报,2005,31(5):765-771. 被引量:19
  • 3高阳,周如益,王皓,曹志新.平均奖赏强化学习算法研究[J].计算机学报,2007,30(8):1372-1378. 被引量:38
  • 4Pan Zhigeng, Cheok, Adrian David, et al. Virtual reality and mixed reality for virtual learning environments[J ]. Computers & Grpahie,2006,30(1) :20 - 28.
  • 5Guo Tiantai, Zhou Xiaojun, Zhu Genxin. Application of cbr in VR- based test and simulation system [ C ]//Proceedings of 2003 International Conference on Machine Learning and Cybernetics. Xi - an: Springer Berlin Heidelberg, 2003:2 337 - 2 340.
  • 6Vicente Marti Centelles. Build your track for TORCS in 20 min utes[EB/OL]. [2007 - 04 - 01 ]. http://usuarios. multimania. es/fltorcs/build _your_ trocs_ track_ in _20 _minutes .pdf.
  • 7Wilson J R, Cruz M D. Virtual and interactive environments for work of the future[J]. International Journal of Human- Computer Studies, 2006 (3) : 158 - 169.
  • 8Guo Tiantai. Research on the Theory and Applications of VR - based Testing[ D]. Hangzhou: Zhejiang University, 2005.
  • 9JIE LIU, HAI LAN, An algorithm using predictiye control theory for automatic drive[A]. Machine Learning and Cybernetics, 2002. Proceedings. 2002International Conference[C]. on, Volume: 3,4 - 5 Nov. 2002:1601 - 1604
  • 10SOTELO, M. A., ALCALDE, S., REVIEJO, J, Vehiele fuzzy driving based on DGPS and vision[A]. IFSA World Congress and 20th NAFIPSInternational Conference, 2001. Joint 9th[C], Volume: 3,25 - 28July2001:1472 - 1477

共引文献710

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部