摘要
针对现有短期光伏功率区间预测问题,提出一种时间卷积神经网络与注意力机制结合的框架,对注意力机制中的时间因果顺序进行严格限制,应用残差机制增强模型挖掘的信息能力,并利用质量驱动区间损失优化模型参数,最终实现短期功率区间预测效果的提高。根据中国河北省某光伏电站的当地气象数据和历史光伏功率数据进行的仿真实验表明,相较于传统的序列预测方法或区间损失,在连续时刻和不同天气类型情况下,所提出的功率区间预测方法效果更有助于电网的科学调度与决策。
For the existing problems of short-term photovoltaic power interval prediction,a framework combining a time convolution neural network with an attention mechanism is proposed.This framework imposes strict constraints on the temporal causal order in the attention mechanism,applies residual blocks to enhance the information mining ability of the model,and utilizes model parameters for quality-driven interval loss simultaneously,which ultimately improves the short-term power interval prediction effect.The simulation experiments based on the local meteorological data and historical photovoltaic power data of a photovoltaic power station in Hebei Province,China,show that compared with the traditional sequence prediction method or interval loss,the power interval prediction method proposed in this paper is more effective for scientific dispatching and decision-making of the power grid in continuous time and different weather types.
作者
崔京港
王芳
叶泽甫
朱竹军
阎高伟
Cui Jinggang;Wang Fang;Ye Zefu;Zhu Zhujun;Yan Gaowei(College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Shanxi Gemeng US-China Clean Energy R&D Center Co.,Ltd.,Taiyuan 030031,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2024年第3期488-495,共8页
Acta Energiae Solaris Sinica
基金
国家基金(61973226)
山西省自然科学基金(201901D211083,20210302123189)
新型电力系统重点实验室项目(SKLD22KM22)。
关键词
光伏发电
功率预测
深度学习
时间卷积网络
因果注意力机制
质量驱动损失
PV power
power forecasting
deep learning
temporal convolutional network
causal attention mechanism
quality-driven loss