期刊文献+

基于多特征核的高光谱遥感影像分类方法

Multi-Feature Kernel Based Classification for Hyperspectral Remote Sensing Image
下载PDF
导出
摘要 支持向量机(SVM)的核函数选取是制约其分类性能的重要因素,而当前的核函数大多以光谱距离作为构核元素,而忽略了光谱角度这一光谱特征。文章提出一种均衡化光谱距离与光谱角多特征组合核(ESAD)的SVM分类器,对2003年意大利帕维亚大学的ROSIS高光谱数据作分类处理,并对影像的分类精度作评价分析。实验结果表明:ESAD核SVM整体分类精度相较于光谱距离核SVM和光谱角核SVM分别提升8.88%和11.03%,分类精度理想,一定程度上抑制了“同谱异物”现象。 Kernel function is an important element which can absolutely affect the ability of Support Vector Machine(SVM),most of kernel functions are made of spectral distance only today,and they often ignore the spectral angle which is an important feature of an image.This paper proposes a SVM classifier who’s kernel is made of multi-feature Equalized Spectral Angle and Distance(ESAD),and classes Pavia University,Italy with ROSIS hyperspectral data which was gotten in 2003 with that.It also evaluates the accuracy of the classified image.It turns that the ESAD kernel SVM gets the overall accuracy increased by 8.88%and 11.03%comparing with spectral angle kernel SVM and spectral distance kernel SVM,the accuracy is optimistic and the method can solve the problem of“different objects with same spectral curve”during image classifying.
作者 张鹏 解雷芳 郭博雷 张健秀 王勇 ZHANG Peng;XIE Leifang;GUO Bolei;ZHANG Jianxiu;WANG Yong(The 27th Research Institute of China Electronics Technology Group Corporation.ZhengZhou,450047)
出处 《长江信息通信》 2024年第2期53-55,共3页 Changjiang Information & Communications
关键词 高光谱遥感 支持向量机 光谱角 分类 核函数 Hyperspectral Remote Sensing Support Vector Machine spectral angle classification kernel function
  • 相关文献

参考文献2

二级参考文献17

  • 1张英,苏宏业,褚健.基于模糊最小二乘支持向量机的软测量建模[J].控制与决策,2005,20(6):621-624. 被引量:27
  • 2余旭初,冯伍法,林丽霞.高光谱──遥感测绘的新机遇[J].测绘科学技术学报,2006,23(2):101-105. 被引量:24
  • 3寻丽娜,方勇华,李新.基于CEM的高光谱图像小目标检测算法[J].光电工程,2007,34(7):18-21. 被引量:11
  • 4DOPIDO INMACULADA,ZORTEA MACIEL, VILLA ALBER- TO ,et al. Unmixing Prior to Supervised Classification of Re- motely Sensed Hyperspectral Images [ J ]. IEEE GEOSCIENCE AND REMOTE SENSING LETYERS,2011,8(4) :760-764.
  • 5HARSANYI J C. Detection and Classification of Subpixel Spec- tral Signatures in Hyperspectral Image Sequences [ D ]. Balti- more : University Of Maryland Baltimore County, 1993 : 81-100.
  • 6CHANG C I, DANTEL HEINZ C. Constrined Subpixel Target Detection For Remotely Sensed Imagery [ J ]. IEEE Transac- tions on Geoscience and Remote Sensing, 2000,38 (3) : 1144- 1160.
  • 7CHANG C I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification[ M ]. New York : Kluwer, 2003 : 54-55.
  • 8Lei Chen,Geng yang,Ying zhou Zhang,et al.Webservices clustering using SOM based on kernel Cosinesimilarity measure. 2ndInternational Conferenceand Engineering . 2010
  • 9Xiaowei Yang,Guang quan Zhang,Jie Lu,et al.Akernel fuzzy c-means clustering-based fuzzy support vec-tor machine algorithm for classification problems withoutliers or noises. IEE Transacations on FuzzySsystems . 2011
  • 10Liang Xu,Xiao Bo Zhang.Incorporating prior knowl-edge in a fuzzy least squares support vector machinesmodel. Sixth International Conference on Natu-ral Computation . 2010

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部