期刊文献+

COSMO-RS方法筛选离子液体用于气体捕集分离研究进展

Research progress of ionic liquids screening for gases captnre and separation by COSMO-RS method
原文传递
导出
摘要 离子液体(ionic liquids,ILs)具有许多独特的理化性质,可作为传统有机溶剂吸收分离气体的优良替代物。预测型分子热力学模型,真实溶剂似导体屏蔽模型(conductor-like screening model for real solvents,COSMO-RS)能够有效模拟“气体+离子液体”体系,预测气体在离子液体中的溶解度及选择性。介绍了COSMO-RS模型中重要的理论参数,阐释了COSMO-RS模型计算离子液体性质时的类三元体系,总结了COSMO-RS方法模拟离子液体吸收分离CO_(2)、SO_(2)、芳香族VOCs(volatile organic compounds)、脂肪族VOCs、水蒸气等气体的研究进展,讨论了COSMO-RS模型针对离子液体体系的校正和优化,展望了COSMO-RS模型筛选离子液体用于气体捕集和分离的未来研究方向。 With many unique physical and chemical properties,ionic liquids are regarded as excellent substitutes of traditional solvents for adsorption and separation of gases.The predictive molecular thermodynamic model COSMO-RS(Conductor-like screening model for real solvents)can be used for modeling of the system(gas+ILs)and prediction of the gas solubility and selectivity in ILs.The review introduces the key parameters of the COSMO-RS model.The pseudo ternary system for the properties calculation of ILs used by COSMO-RS was illustrated.The research progresses for the modeling of adsorption and separation of CO_(2),SO_(2),aromatic volatile organic compounds,aliphatic volatile organic compounds,and H_(2)O used by ILs were summarized.The correction and optimization of COSMO-RS model for ILs was discussed.Finally,the research direction of COSMO-RS model of ILs screening used for gases capture and separation is prospected.
作者 焦梦青 张瑞雪 齐乐天 赵楠 JIAO Mengqing;ZHANG Ruixue;QI Letian;ZHAO Nan(Hebei Center for Ecological and Environmental Geology Research,Hebei GEO University,Shijiazhuang 050031,China;State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250300,China)
出处 《科技导报》 CAS CSCD 北大核心 2024年第4期31-39,共9页 Science & Technology Review
基金 河北省高校生态环境地质应用技术研发中心开放基金项目(JSYF-202205) 国家自然科学基金青年科学基金项目(22108134)。
关键词 离子液体 气体 COSMO-RS 吸收 分离 ionic liquids gas COSMO-RS adsorption separation
  • 相关文献

参考文献5

二级参考文献82

  • 1Erlin S, Zaytseva A, Uusi-Kyyny P, et al. J. Chem. Eng. Data, 2006, 51 (4): 1372-1376
  • 2Sapei E, Zaytseva A, Uusi-Kyyny P, et al. J. Chem. Eng. Data, 2006, 51 (6): 2203-2208
  • 3Sapei E, Zaytseva A, Uusi-Kyyny P, et al. J. Chem. Eng. Data, 2007, 52 (1): 192-198
  • 4Sapei E, Zaytseva A, Uusi-Kyyny P, et al. J. Chem. Eng. Data, 2007, 52 (2): 571-576
  • 5Sapei E, Zaytseva A, Uusi-Kyyny P, et al. Fluid Phase Equilib., 2007, 252 (1/2): 130-136
  • 6Dell'Era C, Zaytseva A, Uusi-Kyyny P, et al. Fluid Phase Equilib., 2007, 254 (1/2): 49-59
  • 7[2008-07-20] http ://unifac. ddbst. de/Default. htm
  • 8Wang S, Stubbs J M, Siepmann J I, et al. J. Phys. Chem. A, 2005, 109 (49): 11285-11294
  • 9Truong T N, Stefanovich E V. Chem. Phys. Lett., 1995, 240 (4) : 253-260
  • 10Banerjee T, Singh M K, Khanna A. Ind. Eng. Chem. Res., 2006, 45 (9): 3207-3219

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部