期刊文献+

机床直线同步电机理想控制器设计及仿真分析

Design and Simulation Analysis on Ideal Controller of Linear Synchronous Motor for Machine Tool
下载PDF
导出
摘要 将非线性磁悬浮系统作为研究对象,建立合适的误差函数,在逼近过程中合理利用RBF神经网络,制定自适应律,该控制方法能够大大加强整个系统的抗干扰性。并开展仿真研究。突加负载下,NNDAC控制恢复所需的时间为0.068、动态降落为1.2×10^(-5)m;相较于SMC和PID控制恢复速度依次提升38.2%、77.3%,动态降落依次下降64.7%、76%NNDAC有效降低悬浮高度的变化幅度,增强其抗干扰性。模拟端部效应扰动下,NNDAC控制曲线几乎没有任何波动,且相较于SMC和PID控制其动态降落分别减小85.7%与95%,NNDAC控制有利于平缓气隙高度的波动,加强系统的抗干扰性。 Taking the nonlinear magnetic levitation system as a research object,this paper establishes the appropriate error function,and rationally adopts the RBF neural network in the process of approximation to formulate the adaptive law.This control method can greatly strengthen the anti-interference performance of the whole system and carry out the simulation research.Under sudden load,the time required for the control and recovery of NNDAC is 0.068,and the dynamic fall is 1.2 × 10~(-5) m.The control recovery speed of NNDAC respectively increases by 38.2% and 77.3% compared with SMC and PID,and the dynamic fall respectively decreases by 64.7% and 76%.NNDAC effectively reduces the variation amplitude of hoverheight and enhances anti-interference performance.Under the simulated end-effect disturbance,NNDAC control curve has almost no fluctuation,and its dynamic fall respectively decreases by85.7% and 95% compared with SMC and PID control.NNDAC control is beneficial to smooth the fluctuation of air-gap height and enhance the anti-interference performance of the system.
作者 李敏 Li Min(School of Mechanical and Electrical Engineering,Xi'an Traffic Engineering Institute,Xi'an 710000,China)
出处 《防爆电机》 2024年第2期7-9,共3页 Explosion-proof Electric Machine
关键词 直线电机 磁悬浮系统 RBF神经网络 自适应控制 Linear motor magnetic levitation system RBF neural network adaptive control
  • 相关文献

参考文献7

二级参考文献60

  • 1张宇,郝悍勇,孙增圻.柔性宏刚性微空间机器人末端连续轨迹跟踪控制研究[J].机械工程学报,2005,41(8):125-131. 被引量:11
  • 2刘云峰,缪栋.电液伺服系统的自适应模糊滑模控制研究[J].中国电机工程学报,2006,26(14):140-144. 被引量:39
  • 3冯蓉,杨建华.基于BP神经网络的函数逼近的MATLAB实现[J].榆林学院学报,2007,17(2):20-22. 被引量:7
  • 4许杰,刘春生.基于神经网络的磁悬浮球自适应控制器[J].机电工程,2007,24(3):22-24. 被引量:5
  • 5Chen J H,Huang T C.Applying neural network to on-line updated PID controllers for nonlinear process control[J].Journal of Process Control,2004,14(2):211-230.
  • 6Phuah J,Lu J,Yahaqi T.The use of NNs in MRAC to control nonlinear magnetic levitation system[C]// IEEE International Symposium on Circuits and Systems.Kobe,2005:3051-3054.
  • 7Lin F J,Teng L T,Shieh P H.Intelligent adaptive backstepping control system for magnetic levitation apparatus[J].IEEE Transactions on Magnetics,2007,43(5):2009-2018.
  • 8Lin F J,Chen S Y,Shyu K K.Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system[J].IEEE Transactions on Neural Networks,2009,20(6):938-951.
  • 9Phuah J,Lu J,Yahaqi T.Simple adaptive control for SISO nonlinear system using neural networks for magnetic levitation plant[C]// Midwest Symposium on Circuits and Systems.Chiba,2004:113-116.
  • 10Yue W Q,Feng S X,Zhang Q.An auto-adaptive PID control method based on RBF neural network[C]// International Conference on Advanced Computer Theory and Engineering.Chengdu,2010:3503-3505.

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部