期刊文献+

一种控制输入约束下的不确定离散系统非脆弱保性能控制器设计

Non-Fragile Guaranteed Cost Control for Uncertain Discrete System with Control input Constraints
下载PDF
导出
摘要 【目的】针对考虑扰动及摄动情况下的控制输入约束的不确定离散系统,提出了非脆弱保性能的控制方法。【方法】首先,以最小化目标函数为性能指标、控制输入饱和范围为约束条件,从而推导出约束状态下的非脆弱保性能控制律。其次,使用李雅普诺夫方程来构造非线性矩阵不等式。再次,结合Schur补定理和布谷鸟群智能优化算法对不等式进行求解,得到控制输入约束下的非脆弱保性能控制律的参数。最后,通过Quanser三自由度陀螺仪平台进行试验验证。【结果】试验结果表明,本研究所提出方法的稳态误差浮动不超过0.07、跟踪误差不超过0.15。【结论】该方法在面对扰动及摄动情况时具有更高的鲁棒性,对提升三自由度陀螺仪的稳定性及控制精度具有重要意义。 [Purposes]In this paper,a non-fragile guaranteed performance control method is proposed for uncertain discrete systems with input constraints under perturbation.[Methods]In this method,By tak-ing the minimum objective function as the performance index and taking the saturation range of the con-trol input as the constraint condition,the non-fragile guaranteed performance control law under the con-straint state is derived.Secondly,the nonlinear matrix inequality is constructed by Lyapunov equation.Then,Schur's complement theorem and Cuckoo bird intelligent optimization algorithm are used to solve the inequality,and the non-fragile guaranteed performance control law parameters under the control in-put constraints are obtained.Finally,the experiment is verified by Quanser-3-DOF gyroscope platform.[Findings]The results show that the steady-state error of the proposed method is less than 0.07 and the tracking error is less than 0.15.[Conclusions]The method proposed in this paper has higher robustness in the face of disturbance and perturbation,and is of great significance for improving the stability and control accuracy of the 3-DOF gyroscope.
作者 段虹州 韩光信 高兴泉 DUAN Hongzhou;HAN Guangxin;GAO Xingquan(Jilin Institute of Chemical Technology,Jilin 132022,China;Jilin Industrial Vocational and Technical College,Jilin 132013,China)
出处 《河南科技》 2024年第3期4-9,共6页 Henan Science and Technology
基金 基于深度学习的数控加工智能化关键技术与系统开发项目(212551GX010288291) 基于微分平坦的多容耦联水罐液位系统优化控制方法研究项目(JJKH20200252K)。
关键词 不确定性离散系统 控制输入约束 非脆弱性 保性能控制 uncertain discrete system control input constraint non-fragile guaranteed performance control
  • 相关文献

参考文献2

二级参考文献19

  • 1Yi LIU, Jun ZHAO (Key Laboratory of Integrated Automation of Process Industry, Ministry of Education, Northeastern University, Shenyang Liaoning 110004, China).Nonfragile control for a class of uncertain switching fuzzy time-delay systems[J].控制理论与应用(英文版),2010,8(2):229-232. 被引量:2
  • 2Ruiquan LIN, Silian CHEN, Xuwei DING (College of Electrical Engineering and Automation, Fuzhou University, Fuzhou Fujian 350108, China).Nonfragile guaranteed cost control for Delta operator-formulated uncertain time-delay systems[J].控制理论与应用(英文版),2010,8(2):233-238. 被引量:2
  • 3尹志忠,李强.近空间飞行器及其军事应用分析[J].装备指挥技术学院学报,2006,17(5):64-68. 被引量:44
  • 4SIGTHORSSON D O, JANKOVSKY P, SERRANI A, et al. Robust linear output feedback control of an airbreathing hypersonic vehi- cle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1052- 1066.
  • 5FIORENTINI L, SERRANI A. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 401 -416.
  • 6DU Y L, WU Q X, JIANG C S. Adaptive predictive control of near- space vehicle using functional link network[J]. Transactions of Nan- ring University of Aeronautics & Astrronautics, 2010, 27(2): 148 - 154.
  • 7DU Y L, WU Q X, JIANG C S, et al. Adaptive robust predictive con- trol for hypersonic vehicles using recurrent functional link artificial neural networks[J]. International Journal of Innovative Computing, Information and Control, 201 O, 6(12): 5351 - 5365.
  • 8LAINIOTIS D G. Optimal Adaptive estimation structure and pa- rameter adaption[J]. IEEE Transactions on Automatic Control, 1971, 16(2): 160- 170.
  • 9LAINIOTIS D G, DESHPANDE J G, UPADHYAY T N. Optimal adaptive control: a non-linear separation theorem[J]. International Journal of Control, 1972, 15(5): 877- 888.
  • 10LAINIOTIS D G. Partitioning a unifying framework for adaptive system-I: estimation[J]. Proceedings of lEEE, 1976, 64(8): 1126 - 1143.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部