期刊文献+

基于改进粒子群算法的六自由度机械臂轨迹优化

Trajectory Optimization of 6-DOF Manipulator Based on Improved Particle Swarm Algorithm
下载PDF
导出
摘要 提出了一种基于改进粒子群算法的六自由度机械臂轨迹优化方法。以机械臂运行时间为目标函数,采用3-5-3多项式插值拟合轨迹,利用改进粒子群优化算法结合动态调整学习因子和自适应惯性权重,快速、准确地找到最优解,改善了基本粒子群算法容易陷入局部最优的问题。在机械臂工作空间内选择可到达的路径点,获取路径点处的关节角度,利用该算法获得平滑、连续且机械臂运行时间最优的机械臂运动轨迹曲线。仿真结果表明,基于改进粒子群算法的机械臂轨迹优化方法能够实现机械臂运行时间最优轨迹规划,具有较高的优化性能和实用性,可为六自由度机械臂运动轨迹规划提供有力支持。 A trajectory optimization method of six-degree-of-freedom manipulator based on improved particle swarm algorithm is proposed.Taking the running time of the manipulator as the objective function,the trajectory is fitted by 3-5-3 polynomial interpolation,and the optimal solution is found quickly and accurately by using the improved particle swarm optimization algorithm combined with dynamic adjustment of learning factors and adaptive inertia weight,which improves the problem that the basic particle swarm algorithm is easy to fall into local optimization.The reachable path points are selected in the workspace of the manipulator,and the joint angles at the path points are obtained.The smooth,continuous and optimal trajectory curve of the manipulator is obtained by using this algorithm.The simulation results show that the trajectory optimization method of manipulator based on improved particle swarm algorithm can realize the optimal trajectory planning of manipulator running time,and has high optimization performance and practicability,which can provide strong support for the trajectory planning of six-degree-of-freedom manipulator.
作者 吴庆宗 胡兴柳 周智慧 WU Qingzong;HU Xingliu;ZHOU Zhihui(School of Electrical Engineering,Yancheng Institute of Technology,Yancheng Jiangsu 224051,China;College of Intelligent Science and Control Engineering,Jinling Institute of Technology,Nanjing Jiangsu 211169,China)
出处 《盐城工学院学报(自然科学版)》 CAS 2023年第4期41-47,共7页 Journal of Yancheng Institute of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61873002) 江苏省研究生实践创新计划项目(SJCX22_XY018) 江苏省产学研合作项目(BY2020445) 盐城工学院校级科研项目(SJCX22_XY018)。
关键词 机械臂 轨迹规划 粒子群算法 manipulator track planning particle swarm optimization
  • 相关文献

参考文献9

二级参考文献69

  • 1LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J]. IEEE Transactions on Automatic Control, 1983, 28(12): 1066-1074.
  • 2BAZAZ S A, TONDU B. Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators[J]. Robotics and Autonomous Systems, 1999, 29(4): 257-268.
  • 3LI Yanliang, SHAO Wei, YOU Long, et al. An improved PSO algorithm and its application to UWB antenna design[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1236-1239.
  • 4GUO Tongying, LI Feng, HUANG Kuan, et al. Application of optimal algorithm on trajectory planning of mechanical arm based on B-Spline curve[J]. Applied Mechanics and Materials, 2013, 376: 253-256.
  • 5SASKA M, MACAS M, PREUCIL L, et al. Robot path planning using particle swarm optimization of Ferguson splines[C]//IEEE Conference on Emerging Technologies and Factory Automation. Prague, Czech Republic, 2006: 833-839.
  • 6SUPAKAR N, SENTIHIL A. PSO obstacle avoidance algorithm for robot in unknown environment[C]//International Conference on Communication and Computer Vision (ICCCV). Coimbatore, India, 2013: 1-7.
  • 7HU Menqi, WU T, WEIR J D. An adaptive particle swarm optimization with multiple adaptive methods[J]. IEEE Transactions on Evolutionary computation, 2013, 17(5): 705-720.
  • 8尼库拉 库克. 机器人学导论-分析、控制及应用[M]. 孙富春, 朱纪洪, 刘国栋等, 译. 第4版. 北京: 电子工业出版社, 2004: 60-72.
  • 9BORYGA M, GRABOS A. Planning of manipulator motion trajectory with higher-degree polynomials use[J]. Mechanism and Machine Theory, 2009, 44(7): 1400-1419.
  • 10刘延柱.关于刚体姿态的数学表达[J].力学与实践,2008,30(1):98-101. 被引量:12

共引文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部