摘要
提出了一种基于目标威胁评估的传感器调度方法。基于现有可获得的目标参量,利用先验知识和目标属性获得隶属度,构建贝叶斯动态模型,实现对不同目标威胁评估。在目标威胁评估结果的基础上,综合任务最后执行时间、任务执行窗口等信息,根据最大收益理论建立多目标探测框架下的传感器调度模型。针对不同场景,采用改进的拍卖算法进行传感器调度仿真,通过任务调度成功率、平均时间偏移、算法效率等评估指标验证了模型可行性和调度算法的有效性。
A sensor scheduling method based on threat assessment is proposed in this paper.Based on the currently available target parameters,the priori decision knowledge and the attribute are used to achieve the membership grade of the target.The Bayesian dynamic model is constructed to achieve threat assessment of different targets.On the basis of target threat assessment,the last executing time and dwelling time are combined to build the sensor scheduling model based on maximum profit theory under the form frame of multi-target detecting.The auction algorithm is applied in different scenes to simulate the sensor scheduling model,the results illustrate that the proposed model is feasible and the algorithm is effective by evaluating the indexes of scheduling success rate,average time shifting and time efficiency.
作者
冯成
孙自强
肖龙
FENG Cheng;SUN Zi-qiang;XIAO Long(Nanjing Research Institute of Electronic Technology,Nanjing Jiangsu 210039,China)
出处
《计算机仿真》
2024年第2期7-12,共6页
Computer Simulation