期刊文献+

六自由度飞机清洗臂运动学建模与轨迹优化

Kinematic Modeling and Trajectory Optimization of Six-DOF Aircraft Cleaning Arm
下载PDF
导出
摘要 传统飞机清洗车由于关节运动不稳定,清洗时间长,清洗效率低造成无法对机身蒙皮进行快捷高效清洗。针对心目问题,设计了六自由度飞机清洗臂,为验证机械臂的运动性能,运用改进D-H法进行运动学分析得到机械臂末端转换矩阵,设计了GUI计算运动学正逆解。并提出将改进粒子群算法与3-5-3分段插值相结合的方法对飞机清洗臂进行时间最优轨迹规划。通过仿真结果显示,与传统3-5-3多项式插值相比,上述方法在保证运动稳定性的同时缩短了运动时间。为以后飞机清洗臂的路径规划与控制问题的研究奠定了基础。 Traditional aircraft cleaning vehicles,due to unstable joint movement,long cleaning time,and low cleaning efficiency,are unable to quickly and efficiently clean the fuselage skin.In response to this problem,a 6-DOF aircraft cleaning robot was designed.In order to verify the kinematic performance of the robot,the improved D-H method was used for kinematic analysis to obtain the end-of-arm conversion matrix.A GUI was designed to calculate kinematic positive and negative solutions.In addition,a method combined the improved particle swarm optimization with 3-5-3 segmental interpolation was proposed to plan the time-optimal trajectory of the aircraft cleaning arm.Simulation results show that compared with the traditional 3-5-3 polynomial interpolation,this method can shorten the motion time while ensuring motion stability,which lays some foundation for the study on path planning and control problems of aircraft cleaning arms.
作者 张宏伟 赵修锟 张天刚 ZHANG Hong-wei;ZHAO Xiu-kun;ZHANG Tian-gang(Engineering Technology Training Center,Civil Aviation University of China,Tianjin 300300,China;School of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China)
出处 《计算机仿真》 2024年第2期38-43,440,共7页 Computer Simulation
基金 国家自然科学基金(U2033211) 航空科学基金(2020Z049067002)。
关键词 飞机清洗 运动学 改进粒子群算法 轨迹优化 Aircraft cleaning Kinematics Improved particle swarm optimization Trajectory optimization
  • 相关文献

参考文献11

二级参考文献74

  • 1王焱.机器人关节内插轨迹4-3-4分段法的分析与计算[J].山东建材学院学报,1996,10(4):48-52. 被引量:1
  • 2陈明杰,刘胜.改进自适应遗传算法在函数优化中的应用研究[J].哈尔滨工程大学学报,2007,28(8):875-879. 被引量:32
  • 3LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J]. IEEE Transactions on Automatic Control, 1983, 28(12): 1066-1074.
  • 4BAZAZ S A, TONDU B. Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators[J]. Robotics and Autonomous Systems, 1999, 29(4): 257-268.
  • 5LI Yanliang, SHAO Wei, YOU Long, et al. An improved PSO algorithm and its application to UWB antenna design[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1236-1239.
  • 6GUO Tongying, LI Feng, HUANG Kuan, et al. Application of optimal algorithm on trajectory planning of mechanical arm based on B-Spline curve[J]. Applied Mechanics and Materials, 2013, 376: 253-256.
  • 7SASKA M, MACAS M, PREUCIL L, et al. Robot path planning using particle swarm optimization of Ferguson splines[C]//IEEE Conference on Emerging Technologies and Factory Automation. Prague, Czech Republic, 2006: 833-839.
  • 8SUPAKAR N, SENTIHIL A. PSO obstacle avoidance algorithm for robot in unknown environment[C]//International Conference on Communication and Computer Vision (ICCCV). Coimbatore, India, 2013: 1-7.
  • 9HU Menqi, WU T, WEIR J D. An adaptive particle swarm optimization with multiple adaptive methods[J]. IEEE Transactions on Evolutionary computation, 2013, 17(5): 705-720.
  • 10尼库拉 库克. 机器人学导论-分析、控制及应用[M]. 孙富春, 朱纪洪, 刘国栋等, 译. 第4版. 北京: 电子工业出版社, 2004: 60-72.

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部