期刊文献+

基于改进Yolov4的行人测距技术研究

Research on Pedestrian Ranging Technology Based on Improved Yolov4
下载PDF
导出
摘要 在自动驾驶技术的研究中,如何检测行人并测量其相对距离,辅助驾驶员预判风险一直是重点研究的问题。由于车辆行驶速度较快,行人又具有目标小、难检测等特征,使用原始的Yolov4模型搭配相似三角形测距法难以达到实时性检测和精准测距的要求。针对上述问题,通过修改Loss函数、轻量化网络结构等技巧改进Yolov4模型。实验结果表明,改进的Yolov4模型运行速度达到了平均62.5FPS,较Yolov4提升25%;结合改进相似三角形测距法,在纵向距离60米、横向距离4米内测距平均误差为4.90%,不仅运行速度更快而且测距准确性更高。 In the research of automatic driving technology,how to detect pedestrians and measure their relative distance,and how to assist drivers to predict the risk has always been the focus of research.Due to the fast speed of vehicles and the small and difficult detection of pedestrians,it is difficult to achieve the requirements of real-time detection and accurate ranging by using the original Yolov4 model and the basic similar triangle ranging method.To solve this problem,this paper improves the Yolov4 model by using the techniques of modifying the loss function and lightweight network structure and proposes an improved similar triangle algorithm based on the similar triangle algorithm for the spatial relationship between pedestrians and vehicles.The experimental results show that the running speed of the new Yolov4 model reaches 62.5 FPS on average,which is 25%higher than Yolov4.Combined with the improved similar triangle algorithm,the average distance measurement error is 4.90%in the longitudinal distance of 60 meters and the transverse distance of 4 meters,which not only runs faster,but also has higher ranging accuracy.
作者 胡清政 董秀成 HU Qing-zheng;DONG Xiu-cheng(Sichuan Aerospace Electronic Equipment Research Institute,Chengdu Sichuan 610100,China;School of Electrical and Electronic Information,Xihua University,Chengdu Sichuan 610039,China)
出处 《计算机仿真》 2024年第2期179-186,共8页 Computer Simulation
基金 教育部“春晖计划”科研项目(Z2017076) 四川省中央引导地方科技发展专项(2021ZYD0034) 四川高科—西华大学产学研联合实验室(2016-YF04-00044-JH)。
关键词 自动驾驶 目标检测 相似三角形测距 Automatic driving Object detection Similar triangle ranging
  • 相关文献

参考文献6

二级参考文献53

  • 1肖志涛,方胜宇,耿磊.基于车道线宽度滤波和抽样行扫描的车道线检测[J].河北工业大学学报,2013,42(2):34-40. 被引量:1
  • 2王建强,迟瑞娟,张磊,李克强,于涛.适应驾驶员特性的汽车追尾报警-避撞算法研究[J].公路交通科技,2009(S1):7-12. 被引量:38
  • 3郭磊,徐友春,李克强,连小珉.基于单目视觉的实时测距方法研究[J].中国图象图形学报,2006,11(1):74-81. 被引量:98
  • 4沈志熙,黄席樾.基于数据回归建模的单目视觉测距算法[J].计算机工程与应用,2007,43(24):15-18. 被引量:16
  • 5Han S, Han Y, Hahn H. Vehicle detection method using Haar-like feature on real time system [ J ]. World Acade-my of Science, Engineering and Technology, 2009, 59: 455-459.
  • 6Sivaraman S, Trivedi M M. Looking at vehicles on the road : A survey of vision-based vehicle detection, tracking, and behavior analysis [ J ]. Intelligent Transportation Sys- tems, IEEE Transactions on, 2013, 14(4) : 1773-1795.
  • 7Nguyen V D, Nguyen T T, Nguyen D D, et al. A fast evolutionary algorithm for real-time vehicle detection [ J ]. IEEE Transactions on Vehicular Technology, 2013.
  • 8Tzomakas C, yon Seelen W. Vehicle detection in traffic scenes using shadows [ C ]//IR-INI, INSTITUT FUR NU- ERO1NFORMATIK, RUHR-UNIVERSITAT. 1998.
  • 9Qian z, Shi H, Yang J, et al. Video-based muhiclass vehicle detection and tracking [ J ]. Journal of Computer Science, 2013(10) : 570-578.
  • 10Choi J. Reahime on-road vehicle detection with optical flows and Haar-like feature detectors [ J ]. 2012.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部