期刊文献+

素数与指数型整数列中项的和

The Sum of a Prime and a Term of Exponential Sequences
原文传递
导出
摘要 本文证明了有正比例的正整数,它们表成斐波那契数与素数之和的表法数恰好为1.我们也研究了形如p+ak的正整数,其中p为素数,{ak}是满足一定条件的指数型整数列. We prove that there is a positive proportion of positive integers which can be uniquely represented as the sum of a Fibonacci number and a prime.We also study the integers of the form p+ak,where p is a prime and{as}is an exponential type sequence of integers.
作者 陈永高 王瑞靖 Yong Gao CHEN;Rui Jing WANG(School of Mathematical Sciences and Institute of Mathematics,Nanjing Normal University,Nanjing 210023,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2024年第2期259-272,共14页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(12171243)。
关键词 斐波那契数 素数 Romanoff定理 渐近密度 Fibonacci number prime Romanoff's theorem asymptotic density
  • 相关文献

参考文献1

二级参考文献8

  • 1Brudern,J.and Fouvry,E.,Lagrange's four squares theorem with almost prime variables,J.Reine Angew.Math.,1994,454:59-96.
  • 2Chen Yonggao and Sun Xuegong,On Romanoff's constant,Journal of Number Theory,2004,106:275-284.
  • 3Liu Jianya and Liu,M.C.,Representation of even integers as sums of squares of primes and powers of 2,Journal of Number Theory,2000,83:202-225.
  • 4Liu Jianya and Lu Guangshi,Four squares of primes and 165 powers of 2,Acta Arith.,2004,114:55-69.
  • 5Liu Jianya,Liu M.C.and Zhan Tao,Squares of primes and powers of 2,Monatsh.Math.,1999,128:283-313.
  • 6Pintz,J.and Ruzsa,I.Z.,On Linnik's approximation to Goldbach's problem(Ⅰ),Acta Arith.,2003,109:169-194.
  • 7Romanoff,N.P.,Uber einige Satze der additiven Zahlentheorie,Math.Ann.,1934,57:668-678.
  • 8Shields P.,Representation of integers as a sum of two h-th powers of primes.Proc.London Math.Soc.,1979,38:369-384.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部