摘要
渗透率作为描述多孔材料流动性能的重要指标,在机械、能源等领域有着广泛的应用。经验关系式作为传统的多孔材料渗透率预测方法,往往通过实验统计法建立,在通用性、预测精度方面存在不足。近年来,基于深度学习构建渗透率预测模型的方法受到了众多学者的关注,在解决经验关系式存在的不足方面表现出很好的前景。为此,围绕基于深度学习的多孔材料渗透率预测建模方法,首先阐述了深度学习技术在结构模型重构中的应用及发展趋势,然后综述了结构参数-渗透率、图像-渗透率以及图像-流场-渗透率快速预测建模方法的基本原理和研究进展,最后展望了该领域的研究方向,以及对多孔材料制造系统性能提升方面的前景。
As an important parameter to describe the flow characteristics of porous materials,permeability is wildly used in various fields such as mechanics and energy.Empirical formulas is the traditional methods for predicting permeability in porous materials,and have some limitations in terms of generality and prediction accuracy.In recent years,there has been growing interest among researchers in utilizing deep learning to construct permeability prediction models,which shows promising prospects in addressing the shortcomings of empirical formulas.Focusing on the modeling approach for permeability prediction in porous materials based on deep learning,the application and development trends of deep learning techniques in porous material reconstruction were discussed.An overview of the fundamental principles and research progress was addressed for fast prediction modeling methods of permeability based on the relationships between permeability and structural parameters,permeability and images,as well as permeability and flow field.Finally,future research directions in this field and the potential for enhancing the performance of porous material manufacturing systems were discussed.
作者
钱淼
周骥
向忠
王嘉琦
魏鹏郦
李俊
QIAN Miao;ZHOU Ji;XIANG Zhong;WANG Jiaqi;WEI Pengli;LI Jun(Key Laboratory of Modern Textile Machinery Technology of Zhejiang Province,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2024年第3期791-810,共20页
Computer Integrated Manufacturing Systems
基金
浙江省“尖兵”“领雁”研发攻关计划资助项目(2023C01158,2022C01188)
浙江理工大学基本科研业务费专项资金资助项目(22242298-Y)。
关键词
深度学习
多孔材料
模型重构
渗透率
预测模型
deep learning
porous material
model reconstruction
permeability
prediction model