摘要
微束X射线荧光成像(μ-XRFI)是无损获取样品内部元素微区分布信息的重要方法,主要应用于微米量级区域内的元素分辨成像。同步辐射是μ-XRFI的理想光源,由于其装置庞大、造价高昂,用户机时紧张,并不适宜于常规应用。基于实验室X射线光管、多毛细管聚焦镜、高精度样品台及硅漂移探测器,研制了一套具有元素分辨的μ-XRFI系统,性能测试结果表明该系统可以测量分析元素含量为0.001%量级的溶液样品和优于20μm的空间分辨能力。基于该μ-XRFI系统开展了应用研究,获得了小鼠脑、芯片及古代陶瓷样品中的多种主要元素及微量元素的空间分布,结果表明该系统可满足μ-XRFI的需求,可为生物医学、电子元件检测、瓷器色彩成分鉴定等领域研究提供帮助。
Microbeam X-ray fluorescence imaging(μ-XFI)is an important tool to obtain the distribution information of elements in the sample without destructive sample preparation.It is widely used in the analysis of elements in the micron region.Although synchrotron radiation is an ideal light source forμ-XFI,it is unsuitable for conventional applications because of its huge device,high cost and tense user time.Based on a laboratory X-ray tube,poli-capillary focusing lens,high-precision sample stage and silicon drift detector,the micro-beam X-ray fluorescence imaging system with element resolution imaging has been established;the performance test results show that the system has an element detection limit of 0.001%and a spatial resolution better than 20 microns.Based on theμ-XFI system,the spatial distribution of various main elements and trace elements in mouse brain,chip and ancient ceramic samples were obtained.The comprehensive results showed that the system could meet the needs of micro area X-ray fluorescence imaging and could provide help for biomedicine,electronic component detection,porcelain color composition identification and other fields.
作者
张文星
陶芬
刘一
邓彪
ZHANG Wen-xing;TAO Fen;LIU Yi;DENG Biao(School of Optical-Electrical and Compuler Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;Shanghai Synchrotron Radiation Facility,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China;Shanghai Synchrotron Radiation Facility,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201204,China)
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2024年第4期1061-1066,共6页
Spectroscopy and Spectral Analysis
基金
国家重点研发计划重点专项(2021YFA1600703,2021YFF0701202)
国家自然科学基金大装置联合基金重点项目(U1932205)资助。