期刊文献+

5MW陆上风力发电系统故障建模与仿真

Fault Modeling and Simulation of 5 MW Onshore Wind Power System
下载PDF
导出
摘要 随着风电行业对系统稳定性要求的提高,对其进行准确的故障建模是十分必要的。以Openfast中提供的5 MW陆上风机模型为背景,建立了风电系统传感器和执行器故障模型,采用增益PI变桨距控制。在Simulink中搭建了控制子系统模型与其联合仿真,在此基础上对变桨系统的执行器以及转速传感器分别进行故障模拟,结果显示系统能够准确反映各种故障发生时的情况,验证了该故障模型具有一定的准确性,为后续的故障诊断和容错控制的工作提供了基础。 The elevated requirements by wind power industry for system stability highlights the necessity of accurate fault modeling of wind generators.Based on the 5 MW onshore wind turbine model provided by Openfast,a control subsystem model and its co-simulation in Simulink were built in this paper.Furthermore,fault simulation of pitch actuators and speed sensors of the pitch system was carried out respectively.The simulation results show that the system can accurately reflect the situation when various faults occur.The accuracy of the fault model is verified,which provides experience for subsequent fault diagnosis and fault tolerance control of the system.
作者 贺国栋 秦斌 王欣 HE Guodong;QIN Bin;WANG Xin(School of Electrical and Information,Hunan University of Technology,Zhuzhou 412000,China)
出处 《电工技术》 2024年第4期22-26,共5页 Electric Engineering
基金 湖南省自然科学基金(编号2021JJ50006,2022JJ50074)。
关键词 稳定性与安全性 5 MW陆上风机 Openfast 故障模拟 stability and security 5 MW onshore wind turbine Openfast fault simulation
  • 相关文献

参考文献9

二级参考文献67

  • 1DAI JuChuan1,2,HU YanPing1,LIU DeShun1,2 & LONG Xin3 1 School of Electromechanical Engineering,Hunan University of Science and Technology,Xiangtan 411201,China,2 College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China,3 Hara XEMC Windpower Co.,Ltd.,Xiangtan 411000,China.Calculation and characteristics analysis of blade pitch loads for large scale wind turbines[J].Science China(Technological Sciences),2010,53(5):1356-1363. 被引量:7
  • 2肖劲松,张传经.风力机叶片在拍打方向的载荷估计与可靠性分析[J].北京工业大学学报,2005,31(6):617-621. 被引量:4
  • 3刘其辉,贺益康,张建华.交流励磁变速恒频风力发电机的运行控制及建模仿真[J].中国电机工程学报,2006,26(5):43-50. 被引量:204
  • 4HE Q N, SHEN Y X, JI L Y. Fault tolerant control strategy for nonlin- ear system based on feedback control [C] //Proceedings of the Amer- ican Control Conference. Piscataway, NJ: Insitute of Electrical and Electronics Engineers Inc, 2013:4897 -4902.
  • 5KAMAL E, AITOUCHE A, GHORBANI R, et al. Robust fuzzy fault- tolerant control of wind energy conversion systems subject to sensor faults [J]. IEEE Transactions on Sustainable Energy, 2012, 3(2): 231 - 241.
  • 6ZHANG Ke. Fault diagnosis and fault-tolerant control based on s- liding mode observer control system [D]. Nanjing: Nanjing Universi- ty of Aeronautics and Astronautics, 2007.
  • 7HONG C M, CHENG F S, CHEN C H. Optimal control for variable- speed wind generation systems using general regression neural net- work [J]. International Journal of Electrical Power & Energy Sys- tems, 2014, 9(60): 14 - 23.
  • 8CHEN W, SAIF M. An Iterative Learning observer for fault detection and accommodation in nonlinear time-delay systems [J]. Internation- al Journal of Robust and Nonlinear Control, 2006, 16(1): 1 - 19.
  • 9MUNTEANU I, BRATCU A I, CUTULULIS N A, et al. Optimal Control of Wind Energy Systems: Towards a Global Approach [M]. London: Springer, 2008:28 - 135, 150 - 158.
  • 10NICHITA C, LUCA D, DAKYO B, et al. Large band simulation of the wind speed for real time wind turbine simulators [J]. IEEE Trans- actions on Energy Conversion, 2002, 17(4): 523 - 529.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部