期刊文献+

Improving Thyroid Disorder Diagnosis via Ensemble Stacking and Bidirectional Feature Selection

下载PDF
导出
摘要 Thyroid disorders represent a significant global health challenge with hypothyroidism and hyperthyroidism as two common conditions arising from dysfunction in the thyroid gland.Accurate and timely diagnosis of these disorders is crucial for effective treatment and patient care.This research introduces a comprehensive approach to improve the accuracy of thyroid disorder diagnosis through the integration of ensemble stacking and advanced feature selection techniques.Sequential forward feature selection,sequential backward feature elimination,and bidirectional feature elimination are investigated in this study.In ensemble learning,random forest,adaptive boosting,and bagging classifiers are employed.The effectiveness of these techniques is evaluated using two different datasets obtained from the University of California Irvine-Machine Learning Repository,both of which undergo preprocessing steps,including outlier removal,addressing missing data,data cleansing,and feature reduction.Extensive experimentation demonstrates the remarkable success of proposed ensemble stacking and bidirectional feature elimination achieving 100%and 99.86%accuracy in identifying hyperthyroidism and hypothyroidism,respectively.Beyond enhancing detection accuracy,the ensemble stacking model also demonstrated a streamlined computational complexity which is pivotal for practical medical applications.It significantly outperformed existing studies with similar objectives underscoring the viability and effectiveness of the proposed scheme.This research offers an innovative perspective and sets the platform for improved thyroid disorder diagnosis with broader implications for healthcare and patient well-being.
出处 《Computers, Materials & Continua》 SCIE EI 2024年第3期4225-4241,共17页 计算机、材料和连续体(英文)
基金 supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant Funded by the Korean government(MSIT)(2021-0-00755,Dark Data Analysis Technology for Data Scale and Accuracy Improvement) This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R407) Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
  • 相关文献

参考文献1

二级参考文献3

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部