摘要
针对部分线性模型的参数与非参数估计问题,基于复合分位数回归提出了一种稳健的模型平均估计量.为了提高估计效率,采用B样条的方法拟合子模型中的非参数函数.数值模拟和仿真实验证明了所提出的估计量预测效果优良.
Aiming at the problem of parameter and non-parameter estimation for partial linear models,a robust model averaging estimator based on composite quantile regression is proposed.To improve the efficiency of estimation,B-splines are used for the non-parameter function of the sub-model.Simulation experiments and practical applications verify the superiority of the proposed method.
作者
肖佳成
XIAO Jia-cheng(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出处
《兰州文理学院学报(自然科学版)》
2024年第2期15-19,24,共6页
Journal of Lanzhou University of Arts and Science(Natural Sciences)
关键词
部分线性模型
样条估计
复合分位数回归
模型平均
partial linear model
spline estimation
composite quantile regression
model averaging