期刊文献+

基于改进烟花优化算法的三维空间气体源定位 被引量:1

Localization of gas source in three-dimensional space based on improved fireworks optimization algorithm
下载PDF
导出
摘要 为探究三维空间中气体源定位及其源强反算问题,提出1种改进烟花爆炸算法(GWOFA)。将定位过程分为全局定位过程和局部定位过程。全局定位过程即结合灰狼优化算法和莱维飞行在三维空间中的全局搜索过程;局部定位过程是在全局定位的结果上的进一步开发过程,其通过引入边界条件的爆炸半径选取方式和选择策略更加高效地改进烟花优化算法实现。研究结果表明:本文算法相比于支持向量机回归模型(LinearSVR)、GWO算法和粒子群算法具有更高精确度,相比于GWO算法和粒子群算法具有更高稳定性和更低随机性;在气体源定位问题上,本文算法整体表现优于LinearSVR、GWO算法和粒子群算法。研究结果可为解决三维空间中气体源定位问题和相关参数估计问题提供新的思路方法。 In order to investigate the problems of gas source localization and back-calculation of source intensity in the three-dimensional space,an improved fireworks explosion algorithm(GWOFA)was proposed.The localization process is divided into two stages:the global localization and the local localization.The global localization stage combines the grey wolf optimization(GWO)algorithm with the Lévy flight for global exploration in three-dimensional space.The local localization process refers to the further development process based on the results of global localization,which is achieved through the introduction of boundary conditions for selecting the explosion radius and a more efficient selection strategy through an improved fireworks optimization algorithm.The results show that the algorithm proposed in this paper has higher accuracy compared to support vector machine regression model(LinearSVR),GWO algorithm,and particle swarm algorithm,as well as higher stability and lower randomness compared to GWO algorithm and particle swarm algorithm.In terms of gas source localization,the overall performance of this algorithm is superior to LinearSVR,GWO algorithm,and particle swarm algorithm.The results can provide new ideas and methods for solving the problems of gas source localization and related parameters estimation in the three-dimensional spaces.
作者 冯崧 曾祥进 黄瑜豪 FENG Song;ZENG Xiangjin;HUANG Yuhao(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan Hubei 430205,China;Hubei Three Gorges Laboratory,Yichang Hubei 445804,China;Jingmen Institute of Chemical Industry and New Materials Industry Technology,Wuhan Institute of Technology,Jingmen Hubei 448000,China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第3期69-76,共8页 Journal of Safety Science and Technology
基金 湖北省湖北三峡实验室创新基金项目(SC215001) 武汉工程大学荆门化工新材料产业技术研究院开放基金项目(JM2023006)
关键词 气体源定位 烟花爆炸算法 莱维飞行 灰狼优化算法 gas source localization fireworks algorithm Lévy flight grey wolf optimization algorithm
  • 相关文献

参考文献3

二级参考文献26

共引文献5

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部