期刊文献+

基于改进AMCL与点云匹配校正的落布机器人定位分析 被引量:1

Positioning Method of Cloth Roller Conveying Robot Based on Improved Amcl and Point Cloud Matching Correction
原文传递
导出
摘要 为了解决落布机器人在纺织车间应用时,由于计算效率低和粒子贫化导致的定位精度降低问题,本文提出了一种基于AMCL(Adaptive Monte Carlo Localization)与点云匹配校正的全局定位方法。首先由AMCL中KLD(Kullback Leibler distance)采样动态删除冗余粒子,并利用蝙蝠算法优化KLD调整后的粒子集,提高粒子多样性,有效压缩粒子规模,从而实现计算精度和效率的双重提升,最后通过NDT(Normal Distribution Transform)算法对二维栅格地图进行高精度激光测量匹配,对AMCL的全局位姿进一步修正,提高定位精度。实验结果验证了本文算法的有效性与可行性。 In order to address the issue of reduced positioning accuracy in textile workshops when using cloth laying robots,this paper proposes a global positioning method based on adaptive Monte Carlo localization(AMCL)and point cloud matching correction.The proposed method involves dynamically deleting redundant particles in AMCL using Kullback Leibler distance(KLD)sampling,and optimizing the particle set adjusted by KLD using the bat algorithm to improve particle diversity and compress the particle scale.This leads to improvement in both computational accuracy and efficiency.Furthermore,the global pose of AMCL is corrected by high⁃precision laser measurement matching of the two⁃dimensional grid map using the normal distribution transform(NDT)algorithm,which enhances positioning accuracy.The effectiveness and feasibility of the proposed algorithm are validated through the experimental results.
作者 游刚 李世芸 仇隽挺 周圣云 张博文 YOU Gang;LI Shiyun;QIU Junting;ZHOU Shengyun;ZHANG Bowen(Faculty of Mechanical and Electrical Engineering,Kunming University of Science&Technology,Kunming 650500,China;College of Mechanical Engineering,Zhejiang University of Technolog,Hangzhou 310014,China;Zhejiang Wantu Sirui Robot Co.,LTD,Wenzhou Zhejiang 650500,China)
出处 《机械设计与研究》 CSCD 北大核心 2024年第1期56-62,共7页 Machine Design And Research
关键词 AMCL NDT 蝙蝠算法 粒子贫化 全局定位 AMCL NDT bat algorithm particle depletion global localization
  • 相关文献

参考文献4

二级参考文献36

共引文献28

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部