期刊文献+

基于PPO的球形机器人目标跟随研究

Research on target following of spherical robot based on PPO
下载PDF
导出
摘要 球形机器人由于其优异的运动性能、出色的地形适应能力和防侧翻的特性,被广泛应用于水下探测、岸滩巡检等需要适应复杂环境的场景。然而球形机器人系统模型具有欠驱动、非线性的特点,运动控制问题复杂,在复杂应用环境下难以可靠跟随目标。为此,提出了一种基于近端策略优化(PPO)算法的球形机器人目标跟随方法。该方法基于深度强化学习理论,在球形机器人动力学模型的基础上,设计了简单高效的动作空间和表征完善的状态空间。并且为提高目标跟随方法的鲁棒性,该方法在奖励函数中引入人工势场,以使目标始终保持在机器人视野中心。仿真结果表明,所提方法能够满足既定场景的跟随需求,球形机器人使用该方法可以对随机运动目标进行可靠跟随。 Spherical robots have become a popular choice for exploring underwater environments,inspecting shores and beaches,and handling other complex scenarios due to their exceptional motion performance,remarkable terrain adaptability,and anti-rollover characteristics.However,the spherical robot system model has inherent features of underdrive and nonlinearity,making motion control a challenging task,especially in complex environments where following targets reliably can be difficult.To address this issue,we propose a new method for following targets using the proximal policy optimization(PPO)algorithm.Our method utilizes deep reinforcement learning theory to design the corresponding state and action spaces based on the spherical robot dynamics model.We introduce an artificial potential field in the reward function to keep the target centered in the robot’s field of view,thereby enhancing the robustness of the target following method.Our simulation results demonstrate that the proposed method meets the requirements of the given scenario,allowing the spherical robot to follow a randomly moving target reliably.
作者 靳一聪 应展烽 刘春政 葛昊 陈志华 JIN Yicong;YING Zhanfeng;LIU Chunzheng;GE Hao;CHEN Zhihua(National Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China;School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第3期280-285,共6页 Journal of Ordnance Equipment Engineering
基金 江苏省自然资源厅科技计划项目(JSZRHKJ202219)。
关键词 球形机器人 目标跟随 强化学习 PPO算法 人工势场 spherical robot target following deep reinforcement learning PPO artificial potential field
  • 相关文献

参考文献5

二级参考文献43

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部