期刊文献+

海啸作用下滨水挡土墙抗震滑动稳定性上限分析

Upper-bound limit analysis of seismic sliding stability of waterfront retaining walls under tsunami loading
下载PDF
导出
摘要 针对沿海地区滨水挡土墙在海啸和地震联合作用下易发生被动破坏的问题,结合极限分析上限法和拟静力法确定地震荷载,研究了海啸作用下滨水挡土墙的抗震滑动稳定性。通过建立墙体滑动与破坏区土楔体整体滑动的墙-土系统及速度容许场,推导出水平地震加速度系数(kh)的表达式。分析了海啸、海平面与地下水高度及墙-地和墙-土摩擦角对地震屈服加速度系数的影响。结果表明,控制地下水位在适当高度并增大墙-土摩擦角可以有效提高滨水挡土墙的抗震滑动稳定性。与经典极限平衡理论相比,该方法考虑了土体的塑性流动及挡土墙的位移模式,且无需计算地震被动土压力的值。 Aiming at the problem that waterfront retaining walls in coastal areas are prone to passive failure under the combined effect of tsunami and seismicity,the seismic load was determined via the upper-bound limit analysis theory and the pseudo-static method to investigate the seismic sliding stability of coastal retaining walls under the action of tsunamis.The wall-soil system and velocity permissible field of the sliding of the wall and the whole failure wedge were established to derive the expression of the seis⁃mic acceleration coefficient(kh).The effects of tsunami height,sea level height,groundwater level,wall-soil friction angle,and wall-soil friction angle on the seismic yield acceleration coefficient kcr were analyzed.The results show that the seismic sliding stabil⁃ity of coastal retaining walls can be effectively improved by controlling the groundwater level at an appropriate height and increasing the wall-soil friction angle.Compared with classical limit equilibrium theory,this method considers the plastic flow of soil and the displacement mode of retaining walls,and does not require the calculation of seismic passive earth pressure values.
作者 刘杰 郭督 马志宏 LIU Jie;GUO Du;MA Zhihong(School of Civil Engineering,Hebei University of Engineering,Handan,Hebei 056000,China)
出处 《中国科技论文》 CAS 2024年第3期305-312,共8页 China Sciencepaper
关键词 滨水挡土墙 极限分析上限法 滑动稳定性 水平地震加速度系数 海啸 waterfront retaining wall upper-bound limit analysis sliding stability seismic acceleration coefficient tsunami
  • 相关文献

参考文献2

二级参考文献33

  • 1ZENG X, STEEDMAN R S. Rotating block method for seismic displacement of gravity walls [J]. Journal of Geotechnieal and Geoenvironmental Engineering, 2000, 126(8): 709-717.
  • 2CHOUDHURY D, AHMAD S M. Stability of waterfront retaining wall subjected to pseudo-static earthquake forces [J]. Ocean Engineering, 2007, 34(14): 1947-1954.
  • 3AHMAD S M, CHOUDHURY D. Seismic rotational stability of waterfront retaining wall using pseudodynamic method [J]. International Journal of Geomechanics, 2010, 10( 1 ): 45-52.
  • 4BASHA B M, BABU G L. Seismic rotational displacements of gravity walls by pseudodynamic method with curved rupture surface [J]. International Journal of Geomechanics, 2009, 10(3): 93-105.
  • 5BASHA B M, BABU G L. Optimum design of bridge abutments under seismic conditions: Reliability-based approach [J]. Journal of Bridge Engineering, 2010, 15(2): 183-195.
  • 6SIDDHARTHAN R, ARA S, NORRIS G M. Simple rigid plastic model for seismic tilting of rigid walls [J]. Journal of Structural Engineering, 1992, 118(2): 469-487.
  • 7NOURI H, FAKHER A, JONES C. Development of horizontal slice method for seismic stability analysis of reinforced slopes and walls [J]. Geotextiles and Geomembranes, 2006, 24(3): 175-187.
  • 8POWRIE W. Limit equilibrium analysis of embedded retaining walls [J]. Geotechnique, 1996, 46(4): 709-723.
  • 9DIAKOUMI M, POWRIE W. Mobilisable strength design for flexible embedded retaining walls [J]. Geoteehnique, 2013, 63(2): 95-106.
  • 10AL A L, SITAR N. Seismic earth pressures on cantilever retaining structures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1324-1333.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部