期刊文献+

融入法因层次结构的法因预测IHLCP模型

An Interpretable Hierarchical Legal Cause Prediction Model With Legal Cause Hierarchy
下载PDF
导出
摘要 该文针对当前法律智能体系可解释性差、低频易混淆法因预测效果不佳、民事纠纷研究过少的问题,设计了一种可解释性层次法因预测IHLCP模型,并将法因之间的层次依赖关系作为模型可解释性的来源进行了研究。模型首先基于案件的语义差异性对事实描述进行编码,然后通过改进的seq2seq-attention模块来预测法因路径,并利用法因内部的文本信息过滤事实描述中的噪声信息,以获得可靠的预测效果。该文设计的IHLCP模型在CIVIL、FSC和CAIL这三个大规模公开数据集上分别达到了当前最好的效果(CIVIL数据集:ACC-91.0%,PRE-67.5%,RECALL-57.9%,F1-62.3%。FSC数据集:ACC-94.9%,PRE-78.8%,RECALL-75.9%,F1-77.3%。CAIL数据集:ACC-92.3%,PRE-90.9%,RECALL-89.7%,F1-90.3%),其中ACC和F1值分别最高提升了6.6%和13.4%。实验结果表明,该设计能够帮助系统理解法因,弥补了当前法律智能体系在低频、易混淆法因预测上的不足,同时提升了模型的可解释性。 To address such issues as the poor interpretability of current legal intelligence system,the unsatisfactory prediction of less-frequent and confusing legal causes and the insufficient research on civil disputes,an interpretable hierarchical legal causes prediction model(IHLCP)is proposed,taking the hierarchical dependence between legal causes as the source of interpretability.In IHLCP,the fact description is encoded by capturing the semantic differences of cases,and an improved attention-based seq2seq model is used to predict the cause path.Further,the inner text information of the cause is used to filter out the noise information in the fact description.Experiments show that the IHLCP model designed in this paper has achieved the state-of-art performance on three large-scale data sets:CIVIL(ACC-91.0%,Pre-67.5%,Recall-57.9%,F 1-62.3%),FSC(ACC-94.9%,PRE-78.8%,RECALL-75.9%,F 1-77.3%)and CAIL(ACC-92.3%,Pre-90.9%,Recall-89.7%,F 1-90.3%),boosting the ACC and F 1 by 6.6%and 13.4%,respectively.The experimental resuces show that this model can help the system to understand the law causes,make up for the start comings of current legal intelligence system in few-shot and confusing Causes of law prediction,make up for the deficiency of low frequency confusing cause prediction and improve the inter pretability of the model.
作者 黄思嘉 彭艳兵 HUANG Sijia;PENG Yanbing(Wuhan Research Institute of Posts and Telecommunications,Wuhan,Hubei 430074,China;Nanjing Fiberhome World Communication Technology Co.Ltd.,Nanjing,Jiangsu 210019,China)
出处 《中文信息学报》 CSCD 北大核心 2024年第1期146-155,共10页 Journal of Chinese Information Processing
关键词 层次法因预测 可解释性 语义差异性 数据不平衡 低频类别预测 hierarchical legal cause prediction interpretability semantic differences data imbalance few-shot prediction
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部