期刊文献+

UltrahighQ Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)microwave dielectric ceramics for temperature-stable millimeter-wave dielectric resonator antennas

原文传递
导出
摘要 Microwave dielectric ceramics should be improved to advance mobile communication technologies further.In this study,we prepared Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics with nonstoichiometric Sr^(2+)ratios based on our previously reported SrY_(2)O_(4) microwave dielectric ceramic,which has a low dielectric constant and an ultrahigh quality factor(Q value).The ceramic exhibited a 33.6% higher Q-by-frequency(Q×f)value(Q≈12,500)at x=0.02 than SrY_(2)O_(4).All Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics exhibited pure phase structures,although variations in crystal-plane spacings were observed.The ceramics are mainly composed of Sr-O,Y1-O,and Y_(2)-O octahedra,with the temperature coefficient of the resonant frequency(τ_(f))of the ceramic increasing with Y_(2)-O octahedral distortion.The ceramic comprises uniform grains with a homogeneous elemental distribution,clear grain boundaries,and no obvious cavities at x=0.02.The Sr_(1+x)Y_(2)O_(4+x)(x=0-0.04)ceramics exhibited good microwave dielectric properties,with optimal performance observed at x=0.02(dielectric constant(εr)=15.41,Q×f=112,375 GHz,and τ_(f)=-17.44 ppm/℃).The τ_(f) value was reduced to meet the temperaturestability requirements of 5G/6G communication systems by adding CaTiO_(3),with Sr_(1.02)Y_(2)O_(4.02)+2wt% CaTiO_(3) exhibiting ε_(r)=16.14,Q×f=51,004 GHz,andτf=0 ppm/℃.A dielectric resonator antenna prepared using Sr_(1.02)Y_(2)O_(4.02)+2wt%CaTiO_(3) exhibited a central frequency of 26.6 GHz,with a corresponding gain and efficiency of 3.66 dBi and 83.14%,respectively.Consequently,Sr_(1.02)Y_(2)O_(4).02-based dielectric resonator antennas are suitable for use in 5G millimeter-wave band(24.5-27.5 GHz)applications.
出处 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第2期155-165,共11页 先进陶瓷(英文)
基金 supported by the National Natural Science Foundation of China(Nos.61761015 and 11664008) the Natural Science Foundation of Guangxi(No.2018GXNSFFA050001) the High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.
  • 相关文献

参考文献9

二级参考文献14

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部