期刊文献+

Top priority current path between SiC particles during ultra-high temperature flash sintering: Presence of PyC “bridges”

原文传递
导出
摘要 Flash sintering(FS)is a novel technique for rapidly densifying silicon carbide(SiC)ceramics.This work achieved a rapid sintering of SiC ceramics by the utilization of ultra-high temperature flash sintering within 60 s.Pyrolysis carbon(PyC)“bridges”were constructed between SiC particles through the carbonisation of phenolic resin,providing a large number of current channels.The incubation time of the flash sintering process was significantly reduced,and the sintering difference between the centre and the edge regions of the ceramics was minimized,with an average particle size of the centre region and edge region being 12.31 and 9.02μm,respectively.The results showed that the porosity of the SiC ceramics after the flash sintering was reduced to 14.79% with PyC“bridges”introduced,and the Vickers hardness reached 19.62 GPa.PyC“bridges”gradually evolved from amorphous eddy current carbon to oriented graphite carbon,indicating that the ultra-high temperature environment in which the sample was located during the flash sintering was successfully constructed.Ultra-high temperature flash sintering of SiC is expected to be applied to the local repair of matrix damage in SiC ceramic matrix composites.
出处 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第2期255-262,共8页 先进陶瓷(英文)
基金 supported by the National Natural Science Foundation of China(No.92160202) the National Natural Science Foundation of China(No.52375188) the National Key R&D Program of China(No.2021YFB3703100) the Ningbo Key Technology Research and Development(No.2023T007).
  • 相关文献

参考文献11

二级参考文献51

  • 1Kai Wang,Lei Chen,Chenguang Xu,Wen Zhang,Zhanguo Liu,Yujin Wang,Jiahu Ouyang,Xinghong Zhang,Yudong Fu,Yu Zhou.Microstructure and mechanical properties of(TiZrNbTaMo)C high-entropy ceramic[J].Journal of Materials Science & Technology,2020(4):99-105. 被引量:16
  • 2谢志鹏,薛伟江.低温下Y_2O_3含量和晶粒尺寸对氧化锆陶瓷力学性能及相变的影响[J].稀有金属材料与工程,2013,42(S1):256-259. 被引量:4
  • 3Zhao J H, Alexandorov P and Li X 2003 IEEE Electron Device Lett. 24 402.
  • 4Song Q W, Zhang Y M, Zhang Y M, Lii H L, Chen F P and Zheng Q L 2009 Chin. Phys. B 18 5474.
  • 5Saxena V, Jian N S and Steckl A J 1999 IEEE Trans. Electron Devices 46 456.
  • 6Song Q W, Zhang Y M, Zhang Y M, Zheng Q and Lu H L 2010 Chin. Phys. B 19 087202.
  • 7Via F L, Calvagno G, Roccaforte F, Ruggiero A and Calcagno L 2005 Appl. Phys. Lett. 87 142105.
  • 8Pakma 0, Serin N, Serin T and Altindal X 2008 J. Appl. Phys. 104 014501.
  • 9Defives D, Noblanc O, Dua C, Brylinski C, Barthula M, Fortuna V A and Meyer F 1999 IEEE Trans. Electron Devices 46 449.
  • 10Yidiz D E, Altindal S and Kanbur H 2008 J. Appl. Phys. 103 124502.

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部