摘要
融合多源传感器信息可实现机械臂的精准控制。提出了一种基于深度强化学习的多源信息融合控制方法,设计并搭建了可实现多源信息融合的机械臂控制实验平台,融合视觉、触觉、编码器3种模态信息,并选取学习效率较高的SAC算法实现机械臂自主精准控制。在实验平台上,开展了3个由易到难的机械臂运动控制任务,以验证所提多源信息融合机械臂控制方案的有效性。
It is necessary to integrate multi-source sensor information in the design of robotic arm to obtain various information and achieve precise control.This paper proposed a control method of muti-source information fusion manipulator based on the SAC algorithm.And this paper designs an experimental platform for manipulator control that can realize multisource information fusion.The platform can fuse the three kinds of modal information,including vision,touch and encoder,and select the SAC with high learning efficiency to realize the autonomous and accurate control of manipulator.On the experimental platform,three manipulator motion control tasks from easy to difficult are carried out to verify the effectiveness of the proposed multi-source information fusion manipulator control scheme.
作者
权双璐
郭艳婕
费逢宇
瑜熙敬
宋小云
辛顺恒
王超
QUAN Shuanglu;GUO Yanjie;FEI Fengyu;YU Xijing;SONG Xiaoyun;XIN Shunheng;WANG Chao(School of Mechanical Engineering,Xi'an Jiaotong University,Xi'an,Shaanxi 710049,China)
出处
《自动化应用》
2024年第5期52-54,共3页
Automation Application
基金
陕西本科和高等继续教育教学改革研究项目(23BZ001)。
关键词
机械臂
多源信息融合
深度强化学习
SAC算法
manipulator
multi-source information fusion
deep reinforcement learning
SAC algorithm