期刊文献+

基于真实世界数据分析中医药非介入治疗肺恶性肿瘤的辨治规律

Discriminative patterns of traditional Chinese medicine in the non-interventional treatment of malignant lung tumors based on real-world data analysis
下载PDF
导出
摘要 目的:基于临床病历信息系统,采用数据挖掘方法从真实世界角度分析中医药非介入治疗肺恶性肿瘤的辨治规律。方法:收集2015年1月1日至2021年12月31日北京中医药大学东直门医院病历系统中诊断为肺恶性肿瘤的患者病史、刻下症和用药信息,在剔除使用介入治疗手段的病例后建立数据库。采用Microsoft Office Excel 2019对高频药物的频数、四气五味、归经及功效进行描述性统计,并对病史和刻下症反映的症状进行数据化统计;对统计得到的高频药物和症状信息借助SPSS Modeler18.0软件中Apriori算法对核心数据进行关联规则分析,并用Web节点构建关联网状图;借助SPSS Stastistics 23.0进行聚类分析。结果:共纳入119例未进行介入治疗的肺恶性肿瘤患者,中医常见症状为咳嗽、白痰、喘憋、纳差、眠差、痰黏、便秘、乏力、胸闷、气短;药物四气以温药最多;五味以甘味最多;归经以肺经频率最高。关联规则结果显示,二项支持度最高的组合为半夏→柴胡、半夏→瓜蒌、杏仁→麻黄;三项关联支持度最高的组合为半夏→茯苓、柴胡,杏仁→麻黄、半夏,半夏→杏仁、柴胡,半夏→瓜蒌、贝母。聚类结果聚为3类,依次为肺阴虚证、痰热壅肺证和肺气虚证。结论:中医药非介入治疗肺恶性肿瘤的中医药辨治规律为:聚类证型依次为肺阴虚证、痰热壅肺证和肺气虚证。治疗多用和解少阳、行气止咳平喘和清虚热化痰饮为主,药物以半夏、甘草、黄芩、茯苓、柴胡多见。 Objective:To analyze the discriminative patterns of traditional Chinese medicine(TCM)in the non-interventional treatment of lung malignancies from a real-world perspective using data mining methods based on a clinical medical record information system.Methods:The medical history,symptoms at diagnosis,and medication information of patients with malignant lung cancer diagnosed in Dongzhimen Hospital of Beijing University of Chinese Medicine from January 1,2015 to December 31,2021 were collected from the medical record system,and a database was established after excluding the cases using interventional therapy.Microsoft Office Excel 2019 software was used to conduct descriptive statistics on the frequency,four basic properties and five tastes,meridian tropism,and efficacy of frequently used drugs.Microsoft Office Excel 2019 software was also used to data-mine the medical history and symptoms.Apriori algorithm in SPSS Modeler 18.0 software was applied to perform association rule analysis on the core data of high-frequency drugs and symptom information obtained from statistics,and an association network graph was constructed using web nodes.Cluster analysis was conducted using SPSS Statistics 23.0.Results:A total of 119 patients with malignant lung tumors who did not undergo interventional treatment were included.The common TCM symptoms included cough,white phlegm,wheezing,poor appetite,poor sleep,sticky phlegm,constipation,fatigue,chest tightness,and shortness of breath;Warm is the most common type among the four properties of the medicine;sweetness is the most common type in the five flavors of the medicine;and the highest frequency of meridian tropism is lung meridian.The association rule results showed that the combinations with the highest support for binomial association were Pinellia ternata→Chaihu,Pinellia ternata→Gualou,and Almond→Ephedra.The combinations with the highest support for trinomial association were Pinellia ternata→(Poria cocos,Bupleurum chinense),Almonds→(Ephedra,Pinellia ternate),Pinellia ternata→(Almonds,Radix Bupleuri),and Pinellia ternata→(Gualou,Fritillaria).The clustering results revealed three clusters,namely phlegm heat obstructing lung syndrome,lung yin deficiency syndrome,and lung qi deficiency syndrome in succession.Conclusion:The discriminative patterns of TCM in the non-interventional treatment of malignant lung tumors were lung yin deficiency syndrome,phlegm heat obstructing lung syndrome and lung qi deficiency syndrome in the syndrome clusters.The treatment is mainly based on harmonizing Shaoyang,moving qi to relieve cough and asthma,and clearing deficiency heat and resolving phlegm-rheum.The commonly used drugs include Pinellia ternata,Glycyrrhiza,Scutellaria,Poria cocos,and Radix Bupleuri.
作者 卢思玮 程淼 LU Siwei;CHENG Miao(Dongzhimen Hospital,Beijing University of Chinese Medicine,Beijing 100700,China)
出处 《中国肿瘤生物治疗杂志》 CAS CSCD 北大核心 2024年第3期271-276,共6页 Chinese Journal of Cancer Biotherapy
基金 国家自然科学基金(No.81973784) 北京中医药大学2019年度青年教师项目(No.2019-JYB-JS-040)。
关键词 中医药 非介入手段 肺恶性肿瘤 真实世界数据 辩治规律 数据挖掘 traditional Chinese medicine non-interventional means malignant lung tumors real world data discriminative pattern data mining
  • 相关文献

参考文献16

二级参考文献187

共引文献787

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部