摘要
在计算机视觉领域,三维人脸重建起着重要的作用,特别是在动画制作、虚拟人脸、人脸识别等领域正被广泛应用。基于单张图片的三维人脸重建,通过使用拟合的模型对图像进行采样,可以创建出面部的UV纹理图。然而通过相机采集到的是单视角的二维图像,存在人脸自遮挡的情况,这导致生成的UV纹理图的信息是不完整的。因此,提出一种针对三维人脸纹理补全问题的条件生成对抗网络,将Unet和部分卷积结合起来作为生成器,从而在纹理修复时可以保留更多的图像信息;判别器中引入SMPatchGAN提高图像判别的真实准确度。实验结果表明,相较于其他算法,所提出的算法取得了较为显著的改进效果,特别是在处于大视角下存在人脸自遮挡问题时,也能重建出精细的三维人脸模型。
作者
程慧敏
姚剑敏
陈恩果
严群
CHENG Huimin;YAO Jianmin;CHEN En'guo;YAN Qun
出处
《信息技术与信息化》
2024年第3期212-216,共5页
Information Technology and Informatization
基金
国家重点研发计划(2022YFB3603503)
福建省技术攻关重点项目(2023G007)。