期刊文献+

基于深度学习卷积神经网络的桑果成熟度检测研究

Research on Mulberry Maturity Detection Based on Deep Learning and Convolution Neural Network
下载PDF
导出
摘要 桑果成熟度检测目的是根据输入的桑果图像实现对桑果成熟度的自动判定,方便果农对果园作物成熟度进行了解。为此,介绍了基于深度学习卷积神经网络的目标检测算法,并基于Faster R-CNN搭建了桑果检测模型,通过MatLab对模型参数进行训练和优化,实现了对桑果的成熟度检测。实验结果表明:基于图像处理和卷积神经网络的桑果成熟度检测系统对桑果成熟度检测准确率较高,具有一定的实用价值。 The purpose of mulberry maturity detection is to automatically determine the maturity of mulberry fruit according to the input mulberry image,so as to facilitate farmers to understand the maturity of orchard crops.It first introduces the target detection algorithm based on deep learning convolution neural network,and then builds a mulberry detection model based on Faster R-CNN.Through the training and optimization of model parameters in Matlab,it realized the maturity detection of mulberry.The experimental results show it has a high accuracy for the mulberry maturity detection system based on image processing and convolution neural network of mulberry maturity detection,which has certain practical significance.
作者 张瑞英 Zhang Ruiying(Beijing Information Technology College,Beijing 100018,China)
出处 《农机化研究》 北大核心 2024年第5期26-30,共5页 Journal of Agricultural Mechanization Research
基金 北京市特色高水平职业院校建设项目(XN02202113)。
关键词 桑果 成熟度 卷积神经网络 Faster R-CNN mulberry maturity convolution neural network Faster R-CNN
  • 相关文献

参考文献13

二级参考文献86

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部