期刊文献+

Theoretical and experimental study of a bi-stable piezoelectric energy harvester under hybrid galloping and band-limited random excitations

下载PDF
导出
摘要 In the practical environment,it is very common for the simultaneous occurrence of base excitation and crosswind.Scavenging the combined energy of vibration and wind with a single energy harvesting structure is fascinating.For this purpose,the effects of the wind speed and random excitation level are investigated with the stochastic averaging method(SAM)based on the energy envelope.The results of the analytical prediction are verified with the Monte-Carlo method(MCM).The numerical simulation shows that the introduction of wind can reduce the critical excitation level for triggering an inter-well jump and make a bi-stable energy harvester(BEH)realize the performance enhancement for a weak base excitation.However,as the strength of the wind increases to a particular level,the influence of the random base excitation on the dynamic responses is weakened,and the system exhibits a periodic galloping response.A comparison between a BEH and a linear energy harvester(LEH)indicates that the BEH demonstrates inferior performance for high-speed wind.Relevant experiments are conducted to investigate the validity of the theoretical prediction and numerical simulation.The experimental findings also show that strong random excitation is favorable for the BEH in the range of low wind speeds.However,as the speed of the incoming wind is up to a particular level,the disadvantage of the BEH becomes clear and evident.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期461-478,共18页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.12272355,12025204 11902294) the Opening Foundation of Shanxi Provincial Key Laboratory for Advanced Manufacturing Technology of China(No.XJZZ202304) the Shanxi Provincial Graduate Innovation Project of China(No.2023KY629)。
  • 相关文献

参考文献3

二级参考文献4

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部