期刊文献+

橡胶悬置结构参数对高频动刚度影响分析

Aralysis of Effect of Structural Parameter of Rubber Suspension on High frequency Dynamic Stiffness
下载PDF
导出
摘要 针对新能源汽车驱动电机高频激励引发的噪声、振动与声振粗糙度问题,对某实心圆柱橡胶悬置进行建模,分析结构参数对高频动刚度的影响。根据橡胶悬置的模态振型特点,分析橡胶基体中圆孔数量、内孔直径、内孔长度、内孔形状对高频动刚度的影响。结果表明,在橡胶基体中开设圆孔能够有效减小橡胶悬置高频动刚度。但是,开设圆孔会使低频区共振峰峰值增大,峰值频率向前移动,尤其是轴向共振峰峰值频率向前移动较大。橡胶基体内孔直径、长度、形状对轴向动刚度影响不显著,内孔直径减小、内孔长度增大会在一定程度上减小径向动刚度。 In order to solve the NVH problem caused by high frequency excitation of new energy vehicle drive motor,a solid cylindrical rubber suspension was modeled,and the effect of structural parameter on high frequency dynamic stiffness was analyzed.According to the modal shape characteristic of rubber suspension,the effects of the number of circular holes,the diameter of inner hole,the length of inner hole and the shape of inner hole in the rubber matrix on high frequency dynamic stiffness were analyzed.The result shows that the high frequency dynamic stiffness of rubber suspension can be effectively reduced by opening circular hole in the rubber matrix.However,opening circular hole will increase the resonance peak value in the low frequency region and the peak frequency will move forward,especially the axial resonance peak frequency will move forward even more.The diameter,length,and shape of inner hole in the rubber matrix have no significant effect on the axial dynamic stiffness.The decrease of the diameter of inner hole and the increase of the length of inner hole will reduce the radial dynamic stiffness to a certain extent.
作者 袁川 沈东明 陆伟强 翁爽 黄海波 Yuan Chuan;Shen Dongming;Lu Weiqiang
出处 《机械制造》 2024年第3期4-8,18,共6页 Machinery
基金 中国(宁波)创新挑战赛优胜项目(编号:2022T007) 国家自然科学基金资助项目(编号:51975300)。
关键词 橡胶悬置 结构 动刚度 影响 分析 Rubber Suspension Structure Dynamic Stiffness Effect Analysis
  • 相关文献

参考文献6

二级参考文献41

  • 1方锡邦,汪佳,杨祖昆,夏邦金.轿车动力总成悬置系统的优化设计[J].合肥工业大学学报(自然科学版),2005,28(2):125-128. 被引量:7
  • 2叶珍霞,朱海潮,鲁克明,赵应龙.囊式空气弹簧刚度特性的非线性有限元法研究[J].振动与冲击,2006,25(4):94-97. 被引量:29
  • 3于增亮.轮毂电机驱动电动车悬架系统振动特性研究[D].上海:同济大学博士学位论文,2010.
  • 4Slawomir D. Experiment-based modeling of cylindrical rubber bushings for the simulation of wheel suspension dynamic behavior [J]. Society of Automotive Engineers, 2000,109 .. 78-85.
  • 5Sj6berg M, Karl L. Non-linear behavior of a rubber isolator system using fractional derivatives [J]. Vehicle System Dynamics, 2002,37(3) :217-236.
  • 6Shaska K. The characterization of nonlinear viscoelastic isolators [D]. Michigan :Wayne State University, 2005.
  • 7Gil-Negretea N, Vinolasa J, Kari L. A simplified methodology to predict the dynamic stiffness of carbon black filled rubber isolators using a finite element code[J]. Journal of Sound and Vibration,2006,296(4/5):757-776.
  • 8Berg M. A non-linear rubber spring model for rail vehicle dynamics analysis [J]. Vehicle System Dynamics, 1998,30 (3/4) : 197 -212.
  • 9Berg M . A model for rubber springs in the dynamic analysis of rail vehicles [J].Proceedings Institution of Mechanical Engineers, 1997,211 (2) : 95-108.
  • 10Olsson A K. Finite element procedures in modeling the dynamic properties of rubber[D]. Sweden: Lund University,2007.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部