摘要
分布式电池储能系统在能量密度方面具有功率快速吞吐、灵活运行等较大优势,已被大量配置于电力系统中,是当前解决光伏并网和消纳的有效手段之一。针对当前储能成本高、收益模型不清晰等问题,提出一种基于资金约束规划模型的分布式电池储能系统协同规划策略,用于在配电网中优化分布式电池储能系统的配置和选址,提高可再生能源在配电网系统中的渗透率,提高其经济性能,并为电力市场提供辅助服务。所提模型将分布式电池储能系统在电网市场机制中的调节、下调和备用等辅助服务表示为利润最大化的混合整数线性规划问题,在支持不平衡配电网运行的同时,最大化参与辅助服务市场的总利润。仿真结果和灵敏度分析验证了所提规划模型的经济性,并验证了线性化非平衡配电网模型的准确性。
The distributed battery energy storage system has a greater advantage in energy density,with power fast throughput,flexible operation ability,has been a large number of configuration in the power system,which is currently one of the effective means to solve the photovoltaic grid connection and consumption.Aiming at the problems such as high energy storage cost and unclear benefit model,this paper proposes a collaborative planning strategy for distributed battery energy storage system(BESS)based on capital constrainted programming model to optimize the configuration and sitting of distributed BESS in the distribution network,and increase the penetration rate of renewable energy in the distribution network system and improve its economic performance.It also provides auxiliary services to the electricity market.The proposed model represents the auxiliary services such auxiliary services regulation,downregulation and backup of distributed BESS in the grid market mechanism as a profit-maximizing mixed integer linear programming problem,which maximizes the total profit of participating in auxiliary services market while supporting unbalanced distribution network operation.Simulation results and sensitivity analysis verify the economy of the proposed programming model and the accuracy of the linearized unbalanced distribution network model.
作者
仇伟杰
王泽浩
赵杰
吴斌
王聪
QIU Weijie;WANG Zehao;ZHAO Jie;WU Bin;WANG Cong(State Grid Hebei Shijiazhuang Electric Power Supply Company,Shijiazhuang 050000,China;Energy Connect(Beijing)Technology Co.,Ltd.,Beijing 100068,China)
出处
《供用电》
北大核心
2024年第4期28-34,52,共8页
Distribution & Utilization
基金
河北省重点研发计划项目(20324401D)。
关键词
分布式能源
电池储能系统
资金约束规划模型
辅助服务
选址定容
distributed energy source
battery energy storage system
capital constrained programming model
auxiliary service
site selection and capacity determination