期刊文献+

基于ICEEMDAN和EMDE的滚动轴承故障诊断

Fault diagnosis of rolling bearing based on ICEEMDAN and EMDE
下载PDF
导出
摘要 针对滚动轴承振动信号的非线性和非平稳特点,开发基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)和增强多尺度分布熵的故障识别模型。首先,利用ICEEMDAN分解滚动轴承振动信号,得到1组内禀模态函数(IMF),根据相关系数筛选出其中反映故障状态关键特征的IMF分量;然后,利用增强多尺度分布熵对各敏感IMF分量进行复杂性评估,得到滚动轴承的故障特征向量;最后,为识别滚动轴承的不同故障类型,使用支持向量机作为故障识别分类器。实验结果表明:所提故障诊断方法具有可观的故障识别精度和稳定性,相比于其他故障诊断方法,该方法具有明显的优势。 According to the nonlinear and non-stationary characteristics of rolling bearing vibration signals,a fault identification model based on improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN),enhanced multi-scale distributed entropy and support vector machine is developed.Firstly,ICEEMDAN is used to decompose the vibration signal of rolling bearing to obtain a set of intrinsic mode functions(IMF),and the IMF components reflecting the key characteristics of fault state are selected according to the correlation coefficient.Then,the complexity of each sensitive IMF component is evaluated by using enhanced multi-scale distribution entropy,and the fault feature vector of rolling bearing is obtained.Finally,in order to identify different fault types of rolling bearings,support vector machine is used as a fault recognition classifier.The experimental results of rolling bearing data sets show that the proposed fault diagnosis method has considerable fault identification accuracy and stability,and compared with other fault diagnosis methods,this method has obvious advantages.
作者 陈继祥 周想凌 程振华 牟宪民 CHEN Jixiang;ZHOU Xiangling;CHENG Zhenhua;MOU Xianmin(School of Mechanical Engineering,Jiangsu Ocean University,Lianyungang 222300,Jiangsu,China;Donghai Power Supply Branch of State Grid Jiangsu Electric Power Co.,Ltd.,Lianyungang 222300,Jiangsu,China;State Grid Hubei Electric Power Co.,Ltd.,Wuhan 430077,Hubei,China;School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430077,China;School of Electrical Engineering,Dalian University of Technology,Dalian 116024,Liaoning,China)
出处 《中国工程机械学报》 北大核心 2024年第1期107-112,117,共7页 Chinese Journal of Construction Machinery
基金 国网江苏省电力有限公司科技资助项目(J2020143)。
关键词 自适应噪声完备集成经验模态分解(ICEEMDAN) 增强多尺度分布熵 滚动轴承 故障诊断 ICEEMDAN enhanced multi-scale distributed entropy rolling bearing fault diagnosis
  • 相关文献

参考文献5

二级参考文献61

  • 1林茂六,陈春雨.基于傅立叶核与径向基核的支持向量机性能之比较[J].重庆邮电学院学报(自然科学版),2005,17(6):647-650. 被引量:11
  • 2周福昌,陈进,何俊,毕果,张桂才,李富才.基于小波滤波与循环平稳度分析的滚动轴承早期故障诊断方法[J].振动与冲击,2006,25(4):91-93. 被引量:17
  • 3张颖,吕路勇,万书亭.冲击脉冲法在滚动轴承故障诊断中的应用[J].石油化工设备技术,2007,28(4):60-64. 被引量:4
  • 4王世一.数字信号处理[M].北京:北京理工大学出版社,2005.
  • 5William W J, Zalubas E J. Helicopter Transmission Fault Detection via Time - Frequency, Seale and Spectral Methods[J]. Mechanical and Signal Processing,2000, 14(4) :25 -30.
  • 6程军圣,杨宇,于德介.一种新的时频分析方法--局部均值分解方法[C]∥2008年全国振动工程及应用学术会议暨第十一届全国设备故障诊断学术会议论文集,2008.
  • 7Huang N E,Zheng Shen, Steven R L, et al. The Empiri- cal Mode Decomposition and Hilbert Spectrum for Non- linear and Non- Stationary Time Series Analysis [J]. Proceedings of the Royal Society of London, Series A, 1998,454(12) :903 - 995.
  • 8Qin S R, Zhong Y M. A New Algorithm of Hilbert - Huang Transform [ J ]. Mechanical Systems and Signal Processing,2006,20(8) :1 941 -1 952.
  • 9Jonathan S S. The Local Mean Decomposition and Its Application to EEG Perception Date [ J ]. Journal of the Royal Society Interface,2005,2 (5) :443 - 454.
  • 10Leontaritis I J, Billings S A. Input - Output Parametric Models for Non -Linear Systems, Part I: Deterministic Non - Linear Systems [ J ]. International Journal of Con- trol, 1985,41 (2) :303 - 328.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部