期刊文献+

基于OpenCV的答题卡识别判题系统研究

Research on Answer Sheet Identification and Judgment System Based on OpenCV
下载PDF
导出
摘要 答题卡识别系统通过答题卡模板设计、答题卡图像采集、图像预处理、识别算法、批阅和评分等环节,实现了对答题卡进行高效、准确的识别和判题。通过测试验证,该系统具有高精度、高效性和实时性,具有较好的适应性和可扩展性,可以随着需求的增加灵活扩展和升级。相较于传统光学扫描判题系统,该答题卡识别判题系统不需要专业的光学扫描设备,仅需要普通的USB摄像头或者手机摄像头即可实现答题卡识别和判题。该系统具有更为灵活和便捷的优势。 The answer sheet recognition system in this paper achieves efficient and accurate recognition and judgment of answer sheet through the design of answer sheet templates,image acquisition,image preprocessing,recognition algorithms,grading,and other processes.Through testing,the system is verified with high accuracy,efficiency,and real-time performance,with good adaptability and scalability.It can be flexibly expanded and upgraded with increasing demand.Compared to traditional optical scanning systems,the answer sheet recognition and judgment system does not require professional optical scanning equipment,and only requires a regular USB camera or mobile phone camera to achieve the answer sheet identification and determination.This system has the advantages of being more flexible and convenient.
出处 《工业控制计算机》 2024年第3期50-53,共4页 Industrial Control Computer
基金 广东省普通高校重点领域研究专项(2022ZDZX1041)资助。
关键词 计算机视觉识别 答题卡识别 OPENCV 图像处理 computer vision recognition answer sheet recognition OpenCV image processing
  • 相关文献

参考文献4

二级参考文献38

  • 1Medina-Oarnicer R, Madrid-Ouevas F J,Oarmona-Poyato A, et al. On candidates selection for hysteresis thresholds in edge detection[J]. Pattern Recognition,2009,42(7) :1284-1296.
  • 2LIN Chun-li, WANG Ke-jun, XlA Yu, et al. Detection method of moving object with small displacement[J]. Journal of Optoe- lectronics Laser,2011 ,:Z2(3) :418-421.
  • 3Sen D,Pal S K. Gradient histogramThresholding in a region of interest for edge detection[J]. Image and Vision Computing, 2010,28:677-695.
  • 4Otsu N. A threshold selection method form gray-level histo- grams[J]. IEEE transactions on systems, man, and cybernet- ics,1979,9(1) :62-66.
  • 5Baradez M O,McGuckin C P,Forraz N,et ai. Robust and auto- mated unimodal histogram thresholding and potential applica- tions[J]. Pattern Recognition, 2004,37: 1131-1148.
  • 6Rosin P L. Unimodal thresholding[J]. Pattern Recognition, 2001,34 : 2083-2096.
  • 7Medina-Oarnicer R, Madrid-Ouevas F J. Unimodal thresholding for edge detection[J]. Pattern Recognition, 2008,41 (7) : 2337- 2346.
  • 8Canny J. A computational approach to edge detection[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6) :679-698.
  • 9Medina-Oarnicer R, Carmona-Poyato A, Munoz-Salinas R,et al. Determining hysteresis thresholds for edge detection by combining the advantages and disadvantages of thresholding methods[J]. IEEE Transactions on Image Processing,2010,19 (1) :165-173.
  • 10Zhu Q. Efficient evaluations of edge connectivity and width uni- formity[J]. Image and Vision computing, 1996, 14:21-34.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部