期刊文献+

Evolution of In783 alloy in microstructure and properties enduring different service times

原文传递
导出
摘要 Impact, tensile, and fatigue tests were performed in In783 alloy serving 4000, 23,000 and 48,000 h. The microstructure was then analysed by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM) to probe the relationship between microstructure and properties. The results show that a new Ni_(5)Al_(3) phase is found, which grows gradually in β phase with serving time increasing,destroying the martensitic structure of the β phase, and degenerating the toughness of the β phase(approximately13.88% reduction). Therefore, the degradation of the βphase results in a sharp dropping of the resistance to stress accelerated grain boundary oxygen(SAGBO) during serving;thus, the intergranular fracture morphology degree increases with duration of service(almost 40% increase from the fractured surface). In addition, the strength of alloy will be gradually enhanced when the γ'phase becomes relatively bulky with serving time increasing due to considerable distortion of the dislocations as a result of the spacing of individual particles, in which any movement of the dislocation will have to overcome a larger number of obstacles per unit length.
出处 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期334-341,共8页 稀有金属(英文版)
基金 financially supported by the National Key R&D Program of China (2016YFC081902) the Shenhua Guohua (Beijing) Electric Power Research Institute Co.,Ltd。
  • 相关文献

参考文献6

二级参考文献7

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部