期刊文献+

基于深度强化学习的无人机路径规划与无线电测绘

UAV Path Planning and Radio Mapping Based on Deep Reinforcement Learning
下载PDF
导出
摘要 针对传统无人机轨迹优化设计方法在构建通信模型上具有局限性的问题,本文面向蜂窝连接无人机通信方式,引入一种基于深度强化学习的无人机路径规划与无线电测绘方法。该方法利用扩展后的双深Q网络模型,结合无线电预测网络,生成无人机轨迹并预测由于动作选择而累计的奖励值。此外,基于Dyna框架将实际飞行和模拟飞行相结合,进一步训练双深Q网络模型,从而大大提高学习效率。仿真结果表明,与Direct-RL算法相比,该方法能更有效地利用学习到的覆盖区域概率图,使无人机避开弱覆盖区域,减小飞行时间和预期中断时间的加权和。 To address the limitations of traditional UAV trajectory optimization design methods in building communication models,this paper presents a deep reinforcement learning-based UAV path planning and radio mapping in cellular-connected UAV communication systems.The proposed method utilizes an extended double-deep Q-network(DDQN)model combined with a radio prediction network to generate UAV trajectories and predict the reward values accumulated due to action selection.Furthermore,the method trains the DDQN model by combining actual and simulated flights based on Dyna framework,which greatly improves the learning efficiency.Simulation results show that the proposed method utilizes the learned coverage area probability map more effectively compared to the Direct-RL algorithm,enabling the UAV to avoid weak coverage areas and reducing the weighted sum of flight time and expected interruption time.
作者 王鑫 仲伟志 王俊智 肖丽君 朱秋明 WANG Xin;ZHONG Weizhi;WANG Junzhi;XIAO Lijun;ZHU Qiuming(College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,Jiangsu,China;College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,Jiangsu,China)
出处 《应用科学学报》 CAS CSCD 北大核心 2024年第2期200-210,共11页 Journal of Applied Sciences
关键词 无人机蜂窝通信 路径规划 深度强化学习 无线电测绘 UAV cellular communication path planning deep reinforcement learning radio mapping
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部