摘要
针对单独使用无人机或无人车对目标区域侦察识别效率低、虚警率高等局限性问题,分析了多种决策级信息融合的方法,提出了基于模糊积分改进的决策级空地信息融合目标识别方法,将空地协同探测的目标类型、位置、威胁度、毁伤程度等信息进行融合识别并输出。仿真结果表明,该算法有效完善了目标信息,提高了目标特征信息识别准确性,降低了虚警率。
Aiming at the problems of low efficiency and high false alarm rate when UAV or unmanned vehicle is used alone to detect and identify target areas,several methods of information fusion at decision level are analyzed,an improved decision-level air-to-ground information fusion target recognition method based on fuzzy integral is proposed.The target type,location,threat degree,damage degree and other information of air-ground cooperative detection are fused to identify and output.The simulation results show that the algorithm effectively improves the target information,improves the accuracy of target characteristic information recognition,and reduces the false alarm rate.
作者
郭宇强
陶思源
郭俊文
卢志刚
李志伟
GUO Yuqiang;TAO Siyuan;GUO Junwen;LU Zhigang;LI Zhiwei(North Automatic Control Technology Institute,Taiyuan 030006,China;Key Laboratory of Intelligent Information Control Technology of Shanxi Province,Taiyuan 030006,China;China Academy of Aerospace Aerodynamics,Beijing 100074,China)
出处
《火力与指挥控制》
CSCD
北大核心
2024年第2期95-101,107,共8页
Fire Control & Command Control
关键词
空地协同
决策级融合
模糊积分
信息融合
融合识别
air-ground cooperative
decisionlevelfusion
fuzzy integration
information fusion
fusion recognition