摘要
个性化自适应资源推荐是以学习者为中心、以人工智能和大数据技术为基础,模拟人类思维进行学习资源推荐的过程。论文在分析学习者和资源学习风格的基础上,分别构建学习者模型和资源模型,运用基于学习风格过滤推荐算法、协同过滤推荐算法、关联规则推荐算法,展开个性化自适应资源推荐研究。研究结果表明,以学习风格为基础的混合式自适应推荐的结果,更贴合学习者的个性化学习需求。
Personalized adaptive resource recommendation is a learner-centered process,which is based on artificial intelli-gence and big data technology,simulated human thinking to carry out learning resource recommendation.In this paper,the learner model and resource model are constructed separately on the basis of analyzing the learning styles of learners and resources,the re-search of recommendation algorithms on personalized and adaptive resource recommendation based on learning style filtering,col-laborative filtering and association rules,which used to carry out.Results show that hybrid adaptive recommendation based on learn-ing style are more in line with the personalized learning needs of learners.
作者
王浩畅
王辉
潘俊辉
Marius.Petrescu
张强
WANG Haochang;WANG Hui;PAN Junhui;MariusPetrescu;ZHANG Qiang(Department of Computer and Information Technology,Northeast Petroleum University,Daqing 163318;Petroleum-Gas University of Ploiesti,Ploiesti 100680)
出处
《计算机与数字工程》
2024年第1期94-98,共5页
Computer & Digital Engineering
基金
国家自然科学基金项目(编号:61402099,61702093)
黑龙江省自然科学基金项目(编号:2018003)
东北石油大学引导性创新基金项目(编号:2020YDL-18)
东北石油大学重点建设课程《Data Mining》资助。
关键词
学习风格
自适应学习
个性化推荐
learning style
adaptive learning
personalized recommendation