期刊文献+

基于服务质量的虚拟化云资源动态分配算法

Dynamic Resource Allocation Algorithm for Virtualization Cloud Based on Quality of Service
下载PDF
导出
摘要 服务质量是衡量云资源动态分配性能的重要指标。论文考虑了用户对时间、成本、安全性和服务可靠性四种服务质量要求,并提出了一种基于服务质量的虚拟化云资源动态分配算法。该算法将蚁群算法与遗传算法相结合,先借助遗传算法为蚁群算法生成有效的初始信息素,利用四个服务质量指标定义适应度函数,最后通过蚁群算法寻找最佳资源。实验结果显示,该算法在服务质量保障和资源均衡等方面都具有较好的性能。 Quality of service is an important indicator to measure the performance of dynamic allocation of cloud resources.This paper considers the four quality of service requirements of users'time,cost,security and reliability,and proposes a virtualized cloud resource dynamic allocation algorithm based on quality of service.The algorithm integrates ant colony algorithm and genetic al-gorithm.Firstly,genetic algorithm is used to generate effective initial pheromone for ant colony algorithm,four service quality indi-cators are used to define fitness function,and finally,ant colony algorithm is used to find the best resources.Experimental results show that the algorithm has good performance in terms of service quality assurance and resource balance.
作者 李凯锋 胡泓 吴海燕 贺莉娜 胡宇 LI Kaifeng;HU Hong;WU Haiyan;HE Lina;HU Yu(NARI Group Corporation(State Grid Electric Power Research Institute),Nanjing 211000;NARI Technology Co.,Ltd.,Nanjing 211106;Beijing Metro Administration Corporation Limited,Beijing 100068)
出处 《计算机与数字工程》 2024年第1期121-125,共5页 Computer & Digital Engineering
关键词 云计算 服务质量 蚁群算法 资源分配 遗传算法 cloud computing QoS ant colony algorithm resource allocation genetic algorithm
  • 相关文献

参考文献5

二级参考文献25

  • 1Buyya R,Yeo C S,Venugopal S,et al.Cloud computing and emerging IT platforms:vision,hype,and reality for delivering computing as the 5th utility[J].Future Generation Cpmputer Systems,2009,25(6):599-616.
  • 2Armbrust M,Fox A,Griffith R,et al.A view of cloud computing[J].Communications of the ACM,2010,53(4):50-58.
  • 3Vouk M A.Cloud computing-issues,research and implementations[J].Journal of Computing and Information Technology,2004,16(4):235-246.
  • 4Foster I,Zhao Y,Raicu I,et al.Cloud computing and grid computing 360-degree compared[C]//Grid Computing Environments Workshop,2008:1-10.
  • 5Ullman J K.NP-complete scheduling problems[J].Journal of Computer and Systems Sciences,1975,10(3):498-500.
  • 6Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE International Conference on Neural Networks,1995:1942-1948.
  • 7Pourbasheer E,Riahi S,Ganjali M R,et al.Application of Genetic Algorithm-Support Vector Machine(GA-SVM)for prediction of BK-channels activity[J].European Journal of Medicinal Chemistry,2009,44(12):5023-5028.
  • 8Calheiros R N,Ranjan R,Beloglazov A,et al.Cloud Sim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J].Software:Practice and Experience,2011,41(1):23-50.
  • 9DAI W,MILENKOVIC O. Subspace pursuit for compressive sens- ing signal reeonstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5):2230-2249.
  • 10华夏渝,郑骏,胡文心.基于云计算环境的蚁群优化计算资源分配算法[J].华东师范大学学报(自然科学版),2010(1):127-134. 被引量:112

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部