期刊文献+

基于嵌入式终端的YOLOv3算法优化实现

Optimized Rearealization of YOLOv3 Algorithm Based on Embedded Terminal
下载PDF
导出
摘要 图像目标识别技术是计算机视觉研究领域的热点问题。然而目前先进的目标检测算法大多基于服务器端训练部署,在如今的移动互联网时代背景下无法做到真正的落地应用。同时考虑到国产化芯片和软件开发环境需求,优化并训练了YOLOv3检测模型,并基于嵌入式终端-百度EdgeBoard边缘AI计算盒进行了模型部署。实验结果充分表明优化后的YOLOv3-MobileNetv1模型对行人、车辆、飞机等多类目标均具有良好的检测识别效果。 Image object recognition technology is a hot issue in the field of computer vision research.However,most of the cur-rent advanced object detection algorithms are based on server-side training and deployment.Under the background of today's mobile Internet era,they cannot be truly applied.At the same time,taking into account the needs of localized chips and software develop-ment environment,the YOLOv3 detection model is optimized and trained,and the model is deployed based on the embedded termi-nal,the Baidu EdgeBoard Edge AI Computing Box.Results of experiment fully show that the optimized YOLOv3-MobileNetv1 mod-el has a good detection and recognition effect on pedestrians,vehicles,airplanes and other types of objects.
作者 侯勇 杨争争 薛少辉 翟二宁 HOU Yong;YANG Zhengzheng;XUE Shaohui;ZHAI Erning(Northwest Institute of Mechanical and Electrical Engineering,Xianyang 712000)
出处 《计算机与数字工程》 2024年第1期162-168,共7页 Computer & Digital Engineering
基金 装备预研领域基金项目(编号:61403120205)资助。
关键词 嵌入式终端 目标检测 深度学习 轻量化模型 embedded terminal object detection deep learning lightweight model
  • 相关文献

参考文献6

二级参考文献16

共引文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部