摘要
图像目标识别技术是计算机视觉研究领域的热点问题。然而目前先进的目标检测算法大多基于服务器端训练部署,在如今的移动互联网时代背景下无法做到真正的落地应用。同时考虑到国产化芯片和软件开发环境需求,优化并训练了YOLOv3检测模型,并基于嵌入式终端-百度EdgeBoard边缘AI计算盒进行了模型部署。实验结果充分表明优化后的YOLOv3-MobileNetv1模型对行人、车辆、飞机等多类目标均具有良好的检测识别效果。
Image object recognition technology is a hot issue in the field of computer vision research.However,most of the cur-rent advanced object detection algorithms are based on server-side training and deployment.Under the background of today's mobile Internet era,they cannot be truly applied.At the same time,taking into account the needs of localized chips and software develop-ment environment,the YOLOv3 detection model is optimized and trained,and the model is deployed based on the embedded termi-nal,the Baidu EdgeBoard Edge AI Computing Box.Results of experiment fully show that the optimized YOLOv3-MobileNetv1 mod-el has a good detection and recognition effect on pedestrians,vehicles,airplanes and other types of objects.
作者
侯勇
杨争争
薛少辉
翟二宁
HOU Yong;YANG Zhengzheng;XUE Shaohui;ZHAI Erning(Northwest Institute of Mechanical and Electrical Engineering,Xianyang 712000)
出处
《计算机与数字工程》
2024年第1期162-168,共7页
Computer & Digital Engineering
基金
装备预研领域基金项目(编号:61403120205)资助。
关键词
嵌入式终端
目标检测
深度学习
轻量化模型
embedded terminal
object detection
deep learning
lightweight model