期刊文献+

基于深度学习的电网短期负荷预测 被引量:1

Deep Learning-Assisted Short-Term Load Forecasting for Sustainable Management of Energy in Grid
下载PDF
导出
摘要 针对微电网短期负荷预测精度不够的问题,论文提出了一种基于双向长短时记忆(bidirectional long short-term memory,Bi-LSTM)深度学习的负荷预测方法。将影响家庭和商业负荷分布形成的参数为输入变量,以微电网的家庭和商业总负荷分布为目标,利用输入变量对Bi-STM网络进行训练,通过识别微电网的消费模式,对微电网负荷进行时预测。利用相关系数(R)、均方误差(MSE)和均方根误差(RMSE)等性能评价指标对预测结果进行分析。结果表明,Bi-LSTM方法具有较高的相关系数。 Aiming at the problem of insufficient short-term load forecasting accuracy of microgrid,this paper proposes a load forecasting method based on bidirectional long short-term memory(BI-LSTM)deep learning.The parameters affecting the forma-tion of household and commercial load distributions are used as input variables,and the total household and commercial load distri-bution of the grid is taken as the target.The input variables are used to train the BI-STM network.By identifying the consumption patterns of the grid,the grid load on-going is forecasted.Correlation coefficient(R),mean square error(MSE)and root mean square error(RMSE)and other performance evaluation indicators are used to analyze the prediction results.The results show that the BI-LSTM method has a higher correlation coefficient.
作者 赵从杰 潘文林 ZHAO Congjie;PAN Wenlin(School of Electrical Information Engineering,Yunnan Minzu University,Kunming 650500;School of Mathematics and Computer Science,Yunnan Minzu University,Kunming 650500)
出处 《计算机与数字工程》 2024年第1期219-222,共4页 Computer & Digital Engineering
关键词 电网 深度学习 短期负荷预测 power grid deep learning short-term load forecasting
  • 相关文献

参考文献4

二级参考文献30

  • 1周林,吕厚军.人工神经网络应用于电力系统短期负荷预测的研究[J].四川电力技术,2008,31(6):68-72. 被引量:5
  • 2李曼,王大治,杜小勇,王珊.基于领域本体的Web服务动态组合[J].计算机学报,2005,28(4):644-650. 被引量:141
  • 3张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037. 被引量:103
  • 4黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 5Dorigo M, Maniezzo V, Colorni A. Ant system: optimiza tion by a colony cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, 1996,26(1): 29-41.
  • 6Dorigo M, Gambardella L M. Ant colony system.. A cooper ative learning approach to the traveling salesman problem IEEE Transactions on Evolutionary Computation, 1997 1(1): 53-66.
  • 7Dorigo M, Caro G D, Gambardella L M. Ant algorithms for discrete optimization. Artificial Life, 1999, 5(2): 137-172.
  • 8Guo Su-Chang, Huang Hong Zhong, WANG Zhong-Lai, Xie Min. Grid service reliability modeling and optimal task scheduling considering fault recovery. IEEE Transactions on Reliability, 2011, 60(1): 263-274.
  • 9Stutzle T, Hoos H. MAX-MIN ant system and local search for the traveling salesman problem//Proceedings of the 4th IEEE International Conference on Evolutionary Computa tion. 1997, 309-314.
  • 10Zeng Liang-Zhao, Boualem Benatallah. QoS-aware middle- ware for Web services composition. IEEE Transactions on Software Engineering, 2004, 30(5): 311-327.

共引文献327

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部