期刊文献+

从奈奎斯特采样到压缩感知拓展教学方法

From Nyquist Sampling to Compressed Perception to Expand Teaching Methods
下载PDF
导出
摘要 从“信号与系统”到“数字信号处理”,采样定理都是重要的教学内容。但是在工程应用中,产生大量数据造成存储空间的极大浪费,而压缩感知突破奈奎斯特采样定理的限制,能够实现远低于奈奎斯特频率的采样。为适应新工科背景下的教学改革,让学生接触前沿研究成果,压缩感知被引入作为传统奈奎斯特采样定理教学的补充和拓展,取得良好的教学效果。 From Signal and System to Digital Signal Processing,sampling theorem is an important content of teaching.However,in engineering applications,a large amount of data will cause the waste of storage space.Compressed sensing breaks through the limitations of Nyquist sampling theorem and can achieve sampling at a lower sampling frequency.In order to adapt to the teaching reform under the background of new engineering andprovide an access to the cutting-edge achievements to students,compressed sensing is introduced as a supplement and expansion of traditional teaching for the Nyquist sampling theorem,and good teaching effect is achieved.
作者 盛志超 方勇 徐强荣 余鸿文 黄知雨 SHENG Zhichao;FANG Yong;XU Qiangrong;YU Hongwen;HUANG Zhiyu(School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
出处 《电气电子教学学报》 2024年第1期164-169,共6页 Journal of Electrical and Electronic Education
基金 国家自然科学基金项目(61901254)。
关键词 拓展教学 奈奎斯特采样定理 压缩感知理论 extended teaching Nyquist sampling theorem compressed sensing theory
  • 相关文献

参考文献3

二级参考文献84

  • 1张云,骆淼,董震.一种数学方法在现场地层对比中的应用[J].工程地球物理学报,2005,2(6):472-474. 被引量:1
  • 2汪太月,李志明.一种广义高斯分布的参数快速估计法[J].工程地球物理学报,2006,3(3):172-176. 被引量:38
  • 3Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 5Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452.
  • 6Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 7Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609.
  • 8Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996.
  • 9Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999.
  • 10Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322.

共引文献212

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部