期刊文献+

夏热冬冷地区农村住宅适应性表皮设计策略与热性能提升实证研究

Empirical Study on Adaptive Building Skin Design Strategies and Thermal Performance Improvement of Rural Residences in Hot Summer and Cold Winter Regions
原文传递
导出
摘要 夏热冬冷地区农村住宅室内热物理环境恶劣,集成自然低品位能源的适应性建筑表皮的设计及应用在提升围护结构热性能、改善室内环境方面具有重要潜力。为此,本文提出了1种整合太阳能、地道风、重质蓄热墙为一体的动态适应性表皮形式,并在某住宅中进行示范应用。研究通过冬季、夏季的热物理环境测试及数据的客观定量对比分析,论证该设计策略对于表皮热工性能的提升效果。研究发现:新型适应性表皮能同时兼顾冬季保温及夏季隔热需求。冬季南北墙封闭空气夹层温度比室外空气温度分别平均提升5.31℃、4.21℃,最大提升幅度10.29℃;开启太阳能集热模块的房间比未开启集热模块的房间高4.04℃,比当地未采取任何保温节能措施的房间高6.53℃。夏季流动空气夹层温度比封闭夹层空气温度最大降低2℃,对应的墙体内壁面温度最大降低0.55℃;墙体通入地道风的房间比无地道风房间全天温度低1.56~2.55℃。 The indoor thermal physical environment of rural residential buildings in hot summer and cold winter regions is poor,while the design and application of adaptive building skin integrated with natural low-grade energy have important potential in enhancing the thermal performance of building envelope and improving the indoor environment.In this paper,a dynamic adaptive skin form integrating solar energy,tunnel air,and heavy heat storage wall was proposed and demonstrated in a residential building.Through the thermal physical environment test in winter and summer and the objective quantitative comparative analysis of the data,the paper discussed the effect of the design strategies on the improvement of the thermal performance of the skin.The results show that the new adaptive skin can improve heat insulation performance in winter and summer at the same time.In winter,the average temperature of the enclosed air layer between the north and south wall is 5.31℃and 4.21℃higher than that of outdoor air,respectively.And the maximum increase is 10.29℃.The temperature of the room with the solar collector on is 4.04℃higher than that without the collector.At the same time,its temperature is 6.53℃higher than that of the local conventional housing.In summer,the temperature of the circulating air layer decreases by 2℃compared with that of the enclosed air layer,and the corresponding inner wall temperature decreases by 0.55℃.The temperature of the room with tunnel air is 1.56~2.55℃lower than that without tunnel air.
作者 赵田 庄智 王建军 ZHAO Tian;ZHUANG Zhi;WANG Jianjun(College of Architecture and Urban Planning,Tongji University,Shanghai 200092,China;Zhiwo Chuangda Construction Technology(Shanghai)Co.,Ltd.,Shanghai 200131,China)
出处 《建筑科学》 CSCD 北大核心 2024年第2期189-197,共9页 Building Science
基金 中央高校基本科研业务费专项资金“智能建筑动态表皮热响应机理与逆向设计方法研究”(22120210590) 国家自然科学基金项目“夏热冬冷地区农宅通风蓄热式表皮耦合自然能源的热调节特性研究”(51608370)。
关键词 自然能源 建筑表皮 热工性能 气候适应性 设计策略 natural energy building skin thermal performance climate adaptability design strategy
  • 相关文献

参考文献4

二级参考文献34

  • 1杨卫波,施明恒.太阳能通风墙的性能研究[J].建筑热能通风空调,2005,24(3):17-21. 被引量:14
  • 2宿天彬,吴英光.新农村绿色生态住宅设计初探[J].规划师,2006,22(B12):28-30. 被引量:7
  • 3金虹,赵华,王秀萍.严寒地区村镇住宅冬季室内热舒适环境研究[J].哈尔滨工业大学学报,2006,38(12):2108-2111. 被引量:45
  • 4DE DEAR R J. A global database of thermal comfort field experiments[J]. ASHRAE Transaetions, 1998,104(lb) : 1141 - 1152.
  • 5NICOL J F, RAJA I A, AUaudim A, et al. Climatic variations in comfortable temperatures: the pakistan projects [ J ]. Energy and Buildings, 1999,30 : 261 - 279.
  • 6WANG Z J, WANG G, LIAN L M. A field study of the thermal environment in residential buildings in Harbin [ J ]. ASHRAE Transactions,2003,109(2) :350 - 355.
  • 7YE X J, ZHOU Z P, LIAN Z W, et al. Field study of a thermal environment and adaptive model in Shanghai [ J ]. Indoor Air, 2006,16:320 - 326.
  • 8HAN J, ZHANG G, ZHANG Q, et al. Field study on occupant' thermal comfort and residential thermal environment in a hot-humid climate of China [ J ]. Building and Environment, 2007,42: 4043 - 4050.
  • 9YOSHINO H, GUAN S, LUN Y F, et ol. Indoor thermal environment of uriah residential buildings in (~ina: winter investigation in five cities[J]. Energy and Buildings,2004,36:1227-1233.
  • 10ZHANG G, ZHENG C, YANG W,et al. Thermal comfort investigation of naturally ventilated classrooms in a subtropical region[J]. Indoor and Built Environment,2007,16(2):148- 158.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部