期刊文献+

Exact Convergence Rates of Functional Modulus of Continuity of a Wiener Process

关于Wiener过程泛函连续模的精确收敛速度(英文)
下载PDF
导出
摘要 Let {W(t),t > 0} be a standard Wiener process and S be the set of Strassen's functions. In this paper we investigate the exact rates of convergence to zero of the variables supp<t<1-h inff∈s sup0<x<1 |(W(t + hx) - W(t))(2hlogh-1)-1/2 - f(x)| and inf0<t<1-h sup0<x<1|(W(t + hx) -W(t))(2hlogh-1)-1/2 - f(x)| for any f ∈ S. As a consequence, a relation between the modulus of non-differentiability and the functional modulus of continuity for a Wiener process is established. 设{W(t),t≥0}是一标准Wiener过程,记S是Strassen重对数律的紧集类·本文中我们讨论了两个变量sup0≤t≤1-hinff∈Ssup0≤x≤1|(W(t +hx)-W(t))(2hlogh-1)-1/2-f(x)|及inf0≤t≤1-hsup0≤x≤1|(W(t+hx)-W(t))(2hlogh-1)-f(x)|(对任何f∈S)趋于零的精确的收敛速度.作为一个推广,我们建立了Wiener过程的不可微模与泛函的连续模之间的一种关系.
作者 王文胜
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第4期507-514,共8页 数学研究与评论(英文版)
基金 Supported by NNSFC (10071072) and Science Foundation of Hangzhou Teacher's College.
关键词 Wiener process functional modulus of continuity modulus of non-differentiability Wiener过程 泛函连续模 精确收敛速度
  • 相关文献

参考文献9

  • 1STRASSEN V. An invariance principlefor the law of the iterated logarithm [J]. Z. Wahrsch.Verw. Geb., 1964, 3: 211-226.
  • 2CSORGOO M, REVESZ P. Strong in Approximations Probability and Statistics [M].Academic Press, New York, 1981.
  • 3MUELLER C. A unification of Strassen 's law and Lévy modulus of continuity[J]. Z. Wahrsch.Verw. Geb., 1981, 56:163 179.
  • 4CHEN B. Functional Limit Theorems [D]. Ph. D Thesis, Carleton of Canada, Ottawa,Canada,1998.
  • 5DE ACOSTA A. Small deviations in the functional central limit theorem withapplications to functional laws of the iterated logarithm [J]. Ann. Probab, 1983, 11:78-101.
  • 6CSAKI E. A relation between Chung's and Strassen's law of the iterated logarithm[J]. Z.Wahrsch. Verw. Geb., 1988, 54: 287-301.
  • 7BOLTHAUSEN E. On the speed of convergence in Strassen's law of the iteratedlogarithm[J]. Ann. Probab, 1978, 6:668-672.
  • 8GOODMAN V, KUELBS J. Rate of clustering for some Gaussian self-similar processes[J].Probab. Th. Rel. Fields, 1991, 88 47-75.
  • 9WANG W S. The exact rates of convergence of functional limit theorems for Csorgo-Révészincrements ofa Wiener process [J]. Submitted for Publication, 1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部