摘要
Let {W(t),t > 0} be a standard Wiener process and S be the set of Strassen's functions. In this paper we investigate the exact rates of convergence to zero of the variables supp<t<1-h inff∈s sup0<x<1 |(W(t + hx) - W(t))(2hlogh-1)-1/2 - f(x)| and inf0<t<1-h sup0<x<1|(W(t + hx) -W(t))(2hlogh-1)-1/2 - f(x)| for any f ∈ S. As a consequence, a relation between the modulus of non-differentiability and the functional modulus of continuity for a Wiener process is established.
设{W(t),t≥0}是一标准Wiener过程,记S是Strassen重对数律的紧集类·本文中我们讨论了两个变量sup0≤t≤1-hinff∈Ssup0≤x≤1|(W(t +hx)-W(t))(2hlogh-1)-1/2-f(x)|及inf0≤t≤1-hsup0≤x≤1|(W(t+hx)-W(t))(2hlogh-1)-f(x)|(对任何f∈S)趋于零的精确的收敛速度.作为一个推广,我们建立了Wiener过程的不可微模与泛函的连续模之间的一种关系.
基金
Supported by NNSFC (10071072) and Science Foundation of Hangzhou Teacher's College.