摘要
以轨道智能交通中的入侵异物智能检测为对象,设计了一种新型的大学生创新训练实践教学平台,提出了一种基于深度学习的轨道异物入侵检测模型,并结合人工智能和机械设计等交叉学科专业知识,自主研发了一种小型轨道异物入侵智能检测系统物理样机,实现了复杂环境下的高效轨道异物入侵检测。实验和实践结果表明,该模型很好地平衡了检测速度和精度,在NVIDIA GTX1080Ti平台上对自建轨道异物入侵数据集的平均检测精度为96.1%,检测速度为209 FPS。通过上述大创实践教学平台的设计、实施和考核,培养和激发了大学生的创新实践和团队协作能力。
In response to the requirements of experimental teaching reform in the innovation and entrepreneurship training practice project for college students,taking the intelligent detection of invading foreign objects in rail intelligent transportation as an opportunity,a new practical teaching platform for college students’innovative training is designed,and a deep learning-based detection of foreign object intrusion on rails is proposed.By combining interdisciplinary knowledge such as artificial intelligence and mechanical design,a prototype is independently developed to detect a small foreign object intrusion.The prototype achieves efficient detection for foreign object intrusion on rails in complex environments.Through the design,implementation and assessment of the above-mentioned practical teaching platform,the innovative practical ability of college students is cultivated and stimulated,and has a significant effect on improving the innovative practical ability and teamwork ability of college students.
作者
叶涛
郑志康
郝天成
徐欣宇
李东圣
YE Tao;ZHENG Zhikang;HAO Tiancheng;XU Xinyu;LI Dongsheng(School of Mechanical and Electrical Engineering,China University of Mining&Technology(Beijing),Beijing 100083,China)
出处
《实验室研究与探索》
CAS
北大核心
2024年第1期152-158,198,共8页
Research and Exploration In Laboratory
基金
中国矿业大学(北京)本科教育教学改革项目(J230416)
中国矿业大学(北京)"课程思政"示范课程建设项目(SZ230502)
《机械工程学科进展》课程思政项目(YKCSZ2023013)
北京市自然科学基金项目(L221018)。
关键词
智能视觉检测
轨道交通
异物检测样机
机械设计
实践教学平台
intelligent visual inspection
rail transit
foreign object detection prototype
mechanical design
practical teaching platform