摘要
针对存在模型非线性和参数不确定性的智能车辆转向系统的预设性能跟踪控制问题,采用径向基函数神经网络对转向系统中的不确定非线性进行在线逼近,结合障碍Lyapunov函数技术为智能车辆的线控转向系统设计预设性能控制器。在控制器设计中,采用动态增益技术补偿控制增益未知对系统控制性能的影响。利用Lyapunov方法分析系统的稳定性,证明在控制器作用下,前轮转角的跟踪误差在预设的时间内收敛至原点预设的邻域;通过数值仿真和整车实验验证了控制方法的合理性。
The prescribed performance tracking control problem of intelligent vehicle steering system with model nonlinearity and parameter uncertainty is studied.The RBFNN(Radial Basis Function Neural Network)is used to approximate the uncertain nonlinearity in the steering system.The prescribed performance controller is designed for the steer-by-wire system of intelligent vehicle based on the barrier Lyapunov function technology.In the design of the controller,the dynamic gain technology is used to compensate the effect of unknown control gain on the system control performance.Finally,the stability of the system is analyzed by Lyapunov method,and it is proved that the tracking error of the front wheel angle can converge to the prescribed neighborhood of the origin within the prescribed time under the action of the proposed controller.The rationality of the control method is verified by numerical simulation and vehicle experiment.
作者
黄艳玲
李红娟
HUANG Yanling;LI Hongjuan(Department of Automotive Engineering,Liaoning Provincial College of Communications,Shenyang 110819,China;School of Mechanical Engineering,Ningxia Institute of Science and Technology,Shizuishan 753000,China)
出处
《辽宁工程技术大学学报(自然科学版)》
CAS
北大核心
2024年第1期85-92,共8页
Journal of Liaoning Technical University (Natural Science)
基金
宁夏自然科学基金项目(2023AAC03360)
宁夏高校科学研究项目(NGY2022147)。
关键词
转向系统
不确定非线性
未知控制增益
径向基函数神经网络
预设性能控制
steering system
uncertain nonlinearity
unknown control gain
radial basis function neural network
prescribed performance control