期刊文献+

基于字词融合与对抗训练的医疗对话实体识别

Entity Recognition of Medical Conversation Based on Word Fusion and Adversarial Training
下载PDF
导出
摘要 针对BERT-BiLSTM-CRF在中文医疗对话实体识别过程中存在字词边界特征获取不充分、实体边界语义泛化能力弱和复杂实体嵌套识别准确率较差等问题,提出了一种基于字词融合与对抗训练的医疗对话实体识别模型。首先,引入外部词汇匹配句中字符对应的字词特征,通过词汇适配器(Lexicon Adapter,LA)集成到BERT模型内部形成字词融合向量,加入对抗训练(Projected Gradient Descent,PGD)生成对抗样本;其次,将字词融合向量与对抗样本作为训练数据传入双向门控循环单元(Bidirectional Gated Recurrent Unit,BiGRU)提取上下文语义信息;最后,用条件随机场(Conditional Random Field,CRF)最终解码,在IMCS21中文医疗对话数据集上实验表明,模型的F1值达到92.06%。相较于BERT-BiLSTM-CRF模型,有效提高了复杂语义的实体理解和标签识别精度。 Aiming at the problems of insufficient acquisition of word boundary features,weak semantic generalization ability of entity boundaries and poor recognition accuracy of complex entities nested in the process of entity recognition of medical dialogue by BERT-BiLSTM-CR Chinese F,a medical dialogue entity recognition model based on word fusion and adversarial training is proposed.Firstly,introduce the word features corresponding to the characters in the external vocabulary matching sentences,integrate the word fusion vector into the BERT model through the Lexicon Adapter(LA),add adversarial training(Projected Gradient Descent,PGD)to generate adversarial samples,and then pass the word fusion vector and adversarial samples as training data to the bidirectional gated loop unit(Bidirectional Gated Recurrent Unit,BiGRU)extract the context semantic information,and finally decode it with a Conditional Random Field(CRF).Experiments on the IMCS21 Chinese medical dialogue dataset show that the F1 value of the model reach 92.06%.Compared with the BERT-BiLSTM-CRF model,the entity understanding and label recognition accuracy of complex semantics are effectively improved.
作者 田海强 汪济洲 徐海珍 孔维哲 Tian Haiqiang;Wang Jizhou;Xu Haizhen;Kong Weizhe(School of Advanced Manufacturing Engineering,Hefei University,Hefei,Anhui 230601,China;School of Artificial Intelligence,Anhui University,Hefei,Anhui 230601,China)
出处 《黑龙江工业学院学报(综合版)》 2024年第2期77-84,共8页 Journal of Heilongjiang University of Technology(Comprehensive Edition)
基金 安徽省高校自然科学研究重大项目(项目编号:KJ2020ZD58)。
关键词 实体识别 深度学习 BERT BiGRU CRF 对抗训练 NER deep learning BERT BiGRU CRF PGD
  • 相关文献

参考文献8

二级参考文献75

共引文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部