期刊文献+

风速与风向对人体热交换影响的CFD仿真模拟

Computational fluid dynamics numerical simulation of the heat transfer for the human body under various wind velocities and wind directions
下载PDF
导出
摘要 为了提升灾害环境中人体热损伤评估精度并保障应急救援人员的生命安全,首先将暖体假人进行三维激光扫描得到数值假人,并按照人体生理构造将其划分为20个区块,通过ICEM软件建立气候室,设置0°~180°的风向;然后通过FLUENT软件计算得到0.2~5.0 m/s风速时的人体显热换热量和辐射换热量,在此基础上求得对流换热量;最后将模拟结果与文献中数据进行对比验证,并分析不同风速与风向对人体热交换的影响。结果表明:提出的计算流体动力学(CFD)仿真模拟方法可有效模拟人体不同部位的换热量;风速的增加会促进人体与环境之间的热交换,当风速从0.2 m/s增加到5.0 m/s时,人体整体对流换热量从56 W/m^(2)增加到360 W/m^(2);人体表面局部部位之间对流换热量有明显的差异,其中四肢部位与环境之间的热交换受风速影响更为明显;风向对人体整体对流换热几乎没有影响,但躯干部位对流换热量受风向的影响较大;在非对称风向(45°、90°、135°)下,人体对流换热量呈现非对称式分布。本研究可为人员安全评估、极端环境下人体热反应建模、防护装备研发等提供基础数据。 In order to improve the accuracy of human thermal damage assessment in a disaster environment and ensure the safety of emergency rescue workers,firstly,a 20-zone computational thermal manikin was constructed using a three-dimensional body scanning technique according to the physiological structure of the human body.Climate chamber and wind directions(0°-180°)were set through ICEM software,and then the sensible heat transfer and radiant heat transfer at 0.2-5.0 m/s air velocities were calculated by FLUENT software.Finally,the convective heat transfer values were calculated through computational fluid dynamics(CFD)simulation and validated against the measurement and simulation results in the literature,and the influence of different wind velocities and wind directions on the human heat exchange was analyzed.The results show that the heat transfer between the human body and the environment is promoted with the increase of air velocity.When the air velocity increases from O.2 to 5.O m/s,the whole-body convective heat transfer of the human body increases from 56 W/m^(2)to 360 W/m^(2).It is found that the large differences in convective heat transfer between the local body,and the heat transfer between the limbs and the environment are more obviously affected by air velocity.In addition,the wind direction has little effect on the whole-body convective heat transfer but significantly influences the trunk part.Asymmetric wind direction(45°,90°,135°)causes the distribution of convective heat flux asymmetrically.This study can offer basic data for personnel safety assessment,human thermal reaction modeling,and protective equipment research and development.
作者 张珊珊 杨杰 ZHANG Shanshan;YANG Jie(College of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an 710054,China)
出处 《安全与环境工程》 CAS CSCD 北大核心 2024年第2期129-136,共8页 Safety and Environmental Engineering
基金 国家重点研发计划项目(2022YFC3006105-02)。
关键词 个体防护 辐射换热量 对流换热量 风速 风向 数值假人 计算流体动力学(CFD) personal protection radiant heat transfer convective heat transfer wind velocity wind direction numerical thermal manikin computational fluid dynamics(CFD)
  • 相关文献

参考文献7

二级参考文献29

  • 1GB10000-88.中国成年人人体尺寸[S].[S].国家技术监督局,1987..
  • 2ARENS E, XU T, MIURA K, et al. A study of occupant cooling by personally controlled air movement [J]. Energy Building, 1998, 27:45- 59.
  • 3CANDIDO C, DEAR R J DE, LAMBERTS R, et al. Air movement acceptability limits and thermal comfort in Brazil's hot humid climate zone [J]. Building and Environment, 2010,45 : 222-229.
  • 4TOMONORI SAKOI, KAZUYO TSUZUKI, SHINSUKE KATO, et al. Thermal comfort, skin temperature distribution, and sensible heat loss distribution in the sitting posture in various asymmetric radiant fields [J]. Building and Environment, 2007, 42 :3984 -3999.
  • 5YAO YE, LIAN ZHIWEI, LIU WEIWEI, et al. Experimental study on physiological responses and thermal comfort under various ambient temperatures[J]. Physiology & Behavior, 2008, 93: 310-321.
  • 6LI BAIZHAN, LI WENJIE,LIU HONG, et al. Physiological expression of human thermal comfort to indoor operative temperature in the NON-HVAC environment[J]. Indoor and Built Environment, 2010, 19(2) : 221-229.
  • 7ASHRAE. ANSI/ASHRAE 55-2004, Thermal environmental conditions for human oceupaney [M]. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. 2004.
  • 8FERGUS NICOL. Adaptive thermal comfort standards in the hot-humid tropics [J]. Energy and Buildings, 2004, 36: 628-637.
  • 9ISO7730:2005. Ergonomics of the Thermal Environment-- Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria [S]. Geneva, Switzerland : International Standard Organisation, 2005.
  • 10ISO. International Standard 7726.. Thermal Environment- Instruments and Methods for Measuring Physical Quantities [ S ], Geneva : International Organization for Standardization, 1998.

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部