期刊文献+

C-Totally Real Submanifolds with Parallel Mean Curvature Vector of Sasakian Space Form

Sasakian空间形式中具有平行平均曲率向量的C-全实子流形(英文)
下载PDF
导出
摘要 We have discussed the C-totally real subrnanifolds with parallel mean curvature vector of Sasakian space form, obtained a formula of J.Simons type, and improved one result of S.Yamaguchi. 本文讨论了Sasakian空间形式中具有平行平均曲率向量的C-全实子流形,得到了一个Simons型公式并且改进了S.Yamaguchi等的一个结果.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第4期545-548,共4页 数学研究与评论(英文版)
关键词 Sasakian space form parallel mean curvature vector C-totally real sub-manifold. Sasakian空间形式 平行平均曲率向量 C-全实子流形
  • 相关文献

参考文献6

  • 1YAMAGUCHI S, KON M, IKAWA T.C-totally real submanifolds [J]. J. Diff. Geom., 1976,11:59-64.
  • 2YAMAGUCHI S, IKAWA T. On compact minimal C-totally real submanifolds [J].Tensor,1975, 29: 30-34.
  • 3CHERN S S, CARMO M DO, KOBAYASHI S. Minimal Submanifolds ofa Sphere with SecondFundamental from of Constant Length [M]. Functional analysis and related fields,Springer,Berlin, 1970, 59-75.
  • 4LI A M, LI J M. An intrinsic rigidity theorem for minimal submanifolds in a sphere[J]. Azch.Math., 1992, 58: 582-594.
  • 5SANTOS W, Submanifolds with parallel mean curvature vector in spheres [J]. TohokuMath.J., 1992, 46: 405-415.
  • 6SIMONS J. Minimal varieties Rienannian manifolds [J]. Ann. of Math., 1968, 88:62-105.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部