摘要
超声是乳腺癌筛查的一线检查方法,BI-RADS的应用使超声对乳腺疾病的诊断具有相对一致性,但仍不同程度受操作者主观因素影响。随着计算机技术的发展和大数据时代的到来,人工智能乳腺超声从基于二维静态图像分析、到动态捕获病灶和关键帧分析、到全自动乳腺容积扫查和多模态研究,基于深度学习建立的计算机辅助诊断模型性能不断提升和完善。人工智能超声的应用可辅助超声医师提高诊断的准确性和一致性,在乳腺癌的筛查和诊疗过程中具有重要价值。
Ultrasound is the first-line screening method for breast cancer.The application of BI-RADS makes the ultrasound diagnosis of breast diseases relatively consistent,but it is still affected by subjective factors of operators.With the advancement of computer technology and the arrival of the era of big data,the performance of computer-aided diagnostic models based on deep learning has been continuously improved from two-dimensional static image analysis to dynamic capture of lesions and keyframe analysis to automatic breast volume scanning and multi-modal research.The use of artificial intelligence in ultrasound can help sonographers increase the consistency and accuracy of diagnosis,and play an important role in the process of breast cancer screening,diagnosis and treatment.
作者
邹明池
冉海涛
姚延峰
ZOU Mingchi;RAN Haitao;YAO Yanfeng(Department of Ultrasound,The Affiliated Yongchuan Hospital of Chongqing Medical University,Chongqing 402160,China;不详)
出处
《中国临床研究》
CAS
2024年第3期344-347,364,共5页
Chinese Journal of Clinical Research
基金
国家自然科学基金面上项目(82071926)
国家自然科学基金重点项目(81630047)。
关键词
人工智能
深度学习
影像组学
乳腺癌
超声
新辅助化疗
淋巴结转移
超声医师
Artificial intelligence
Deep learning
Imaging histology
Breast cancer
Ultrasound
Neoadjuvant chemotherapy
Lymph node metastasis
Sonographer