期刊文献+

电弧增材制造铝合金的“控形”和“控性”技术研究现状 被引量:1

Research Status of Shape Control and Performance Control Technology of Wire Arc Additive Manufactured Aluminum Alloy
下载PDF
导出
摘要 电弧增材制造铝合金具有沉积速度快、设备成本低、材料利用率高等优点,受到工业界和学术界的极大关注。但电弧增材制造固有的熔化和凝固特性决定最终材料存在“控形”“控性”的难题。本文从“控形”“控性”两方面对电弧增材制造铝合金的国内外进展进行分析,重点阐述了工艺参数优化、在线处理方式如基板预热、冷轧、熔池在线监测、微铸锻、搅拌摩擦焊等,以及后处理方式,讨论了不同技术的发展现状及趋势,并提出电弧增材制造铝合金“控形”“控性”的发展方向。 Wire arc additive manufacturing(WAAM)aluminum alloy has the advantages of fast deposition speed,low equipment cost and high material utilization rate,which has received great attention from industrial and academic circles.However,the inherent melting and solidification characteristics of arc additive manufacturing determine the problems of shape control and performance control of the materials.The developments in China and foreign were analyzed from the two aspects of"shape control"and"performance control".The process parameters optimization,online processing methods such as substrate preheating,cold rolling,on-line monitoring,micro casting forging,friction stir welding and the post-processing methods were elaborated,the present situation and tendency of different technologies were discussed,and the development direction of shape control and performance control in arc additive manufacturing of aluminum alloy was put forward.
作者 宿佳琪 邢飞 锁红波 刘常升 董呈 郭翰铭 SU Jiaqi;XING Fei;SUO Hongbo;LIU Changsheng;DONG Cheng;GUO Hanming(School of Materials Science and Engineering,Northeastern University,Shenyang 110819,China;Nanjing Zhongke Yuchen Laser Technology Co.,Ltd.,Nanjing 210038,China;School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,China)
出处 《热加工工艺》 北大核心 2024年第5期24-29,38,共7页 Hot Working Technology
基金 江苏省科技成果转化专项资金项目(BA2020004)。
关键词 电弧增材制造 铝合金 控形 控性 wire arc additive manufacturing(WAAM) aluminum alloy shape control performance control
  • 相关文献

参考文献8

二级参考文献37

  • 1从保强,欧阳瑞洁,乔柳平.不同CMT工艺2014-T6焊缝成形及气孔分析[J].焊接学报,2015,36(5):37-40. 被引量:11
  • 2刘望兰,胡绳荪,尹玉环.电弧快速成形工艺的研究现状[J].焊接,2006(7):12-15. 被引量:6
  • 3Ding J, Colegrove P, Mehnen J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12): 3315-3322.
  • 4Williams S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2015.
  • 5Ouyang J H,Wang H J, Kovacevic R. Rapid prototyping of 5356-aluminum alloy based on variable polarity gas tungsten arc welding: process control and microstructure[J]. Materials and Manufacturing Processes, 2002, 17: 103- 124.
  • 6Wang H J, Jiang W H, Ouyang J H, et al. Rapid prototyping of 4043 Al-alloy parts by VP-GTAW[J]. Journal of Materials Processing Technology, 2004, 148: 93- 102.
  • 7Gn J L, Ding J L, Williams S W, et al. The strengthening effect of inter-layercold working and post-deposition heat treatment on the additively manufactured A1-6.3Cu alloy[J]. Materials Science & Engineering A, 2016, 651:18-26.
  • 8Mayer H, Papakyriacou M, Zettl B, et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminum alloys[J]. International Journal of Fatigue, 2003, 25(3): 245-256.
  • 9Toda H, Oogo H, Uesugi K, et al. Roles of pre-existing hydrogen micro-pores on ductile fracture[J]. Materials Transactions, 2009, 50: 2285- 2290.
  • 10Kobayashi M, Dorce Y, Toda H, et al. Effect of local volume fraction of micro-porosity on tensile properties in AI-Si-Mg cast alloy[J]. Materials Science and Technology, 2010, 26:962-967.

共引文献55

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部